
Mastering Vim

Damian Conway

Copyright ! Thoughtstream Pty Ltd, 2006. All Rights Reserved.

Summary
Targeted copy-and-paste 18

18

19

Buffers

Commands

20

21

21

Line and paragraph motions

Miscellaneous motions

Matching delimiters

23

23

24

24

24

25

2510

2510

26

26

12

12

13

2813

13

14 29

14 29

2914

3016

Cautious substitution 3016

31

31

32

32

Preventing mishaps

Improving your chances

32

Cutting text 3317

Tip 38: Make a backup

Tip 39: Edit visually
Pasting text

Indented pasting

3418

18

Tip 1: Get vim

Tip 2: Seek help

Tip 3: Understand the metaphors
Modes

Tip 4: Leam your alphabet

Tip 5: Quit smarter

Tip 6: Learn to move

Word motions

Repeated motions

Scrolling a large buffer

Tip 7: Keep track of where you are

Tip 8: Keep track of where you were
Editing with marks

Tip 9: Use vim's own navigation marks

Tip 10: Learn how to change text efficiently

Tip 11: Repeat yourself numerically
Tip 12: Fix your deletions

Tip 13: Control your insertions
Tip 14: Search smarter

Searching within a line

Searching for existing word

Case inlsensitivity

Tip 15: Use searches as motions

Tip 16: Preview your search results

Tip 17: Highlight your search results
Tip 18: Search and destroy

Multiple substitutions

Substitute again 16

Tip 19: Copy shamelessly 16
Copying text objects 17
Copying delimited objects 17
Internal copies Error! Sookmark not defined.

Targeted cut-and-paste

Tip 20: Store text in registers

Tip 21: Travel through time
Branched undo

Tip 22: Read and write files efficiently

Reading buffers

Tip 23: Use a filter

Tip 24: Sort internally

Tip 25: Remember your history

Tip 26: Autocomplete your text

Filename completion

Navigating a completion

Smarter completion

Selective completion

Other forums of completion

Tip 27: Complete your text too

Filenameifilepath completion

Defined symbol completion

Identifier corn pletion

Other completions

Tip 28: Vim is a file browser

Tip 29: Explore vim's many options

Tip 30: Show your line numbers

Tip 31: Constrain your line widths

Tip 32: Write before you leave

Tip 33: Configure your . vimrc file

Tip 34: Set your options by browsing

Tip 35: Defang those tabs

Sticking with eight-column tabs

Adjusting tabs

Replacing tabs as you type

Tip 36: Indent deverly

Smarter indenting

Total tabular control

Tip 37: Recover after a disaster

Recovering after a crash

43Visual mode

Visual-Line mode

Visua/-B/ock.mode

35

43

35

36 Tip 45: Script vim
Functions and maps

36 46

37

38

38

39

39Insertion maps

Normal maps

Command-line maps

50Tip 50: use vi.m as a pager

Conclusion39 50

51

Operator-pending maps

Other kinds of maps

52

41 53

41Managing maps

Unremappable maps Context specifiers

Match boundaries 54

Terminating block mode

Visually selecting text objects

Tip 40: Abbreviate your typing
Restrictions on the LHS

Expanding abbreviations

Reviewing your abbreviations

Targeted abbreviations

Computed abbreviations

Tip 41: Map your commands

Mastering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 damian@conway.org!

Tip 42: Colour your syntax

Tip 43: Fix bugs fast

Navigating errors

Tip 44: Let vim do the indenting for you

Tip 46: Play tag 47
Tip 47: Have vim do some of the coding for you 48
Automatic file skeletons 48
Patching ji les in vi m 49
Tip 48: Script vim in Perl/Python/Ruby/etc. 49
Tip 49: RTFM 50
Appendix A: vim's pattern syntax
Characters and character classes

Repetitions

Alternatives, synfernatives, and sequences

Tip 1: Get v i m

~ If you' re still using vanilla v i it's time to upgrade to v i m

~ D ow nload i t from : ht t p : / / www . v i m. o r g / down l o ad . php

Binary distributions available for "troublesome" platforms

Tip 2: Seek help

~ Type:

: he l p

Or for a specifi c topic:

: he l p <t op i c><CR>

~ Or for a li st of topics containing a given string:

: he l p <s t r i n g><TAB>

Or for any topic matching a given v i m-ish! pattern:
: h e l p g r e p <p a t t e r n >

~ Then : cnext <CR> to step through matches
~ Within help files, anything in vertical bars is a hyperlink

~ When the cursor is within bars, hit CTRL-] to jump to that topic

~ At any time, hit CTRL- T to back out of the sequence of links

Tip 3: Understand the metaphors

~ Vi -like editors all w ork on the same basic set of principles

~ Understanding them helps make sense of the enormous complexity of the vi m
i n t er f ace

M o d es

~ A lm ost al l v er si on s of v i are modal

Usually in one of two basic modes...
~ Normal mode, w'here you can move around and make large large-scale changes

t o th e t ex t

Insert mode, where you can type in literal text

Mastering Vim
Copyright ! Thoughtstream Pty Ltd, 2006

 damian@conmay.org!

~ O th er m od es in clu d e:

Command-line, where you' re typing an extended command after a colon
VisuaE and VisuaE-Btock, where you' re selecting text prior to manipulating it

Replace, where you' re typing literal text over the top of existing text

Experienced v i users instinctively know what mode they' re in

For novices, it's handy to set the : showmode option:
: s e t s h o wmo d e < CR>

~ If you become "modally confused" just hit <ESC> to go back to Normal mode

Vi m stores each text you edit in a buff er
Typically each buffer is associated with a file and filename

But that's not necessary: you can use nameless buffers too

Changes to the text are updated in the buffer immediately

But changes are only propagated back to the file when you : wr i t e the buffer
 m ore on th at l ater !

If v i m is terminated unexpectedly, you can generally recover the buffers you
were working on more on that later too!

Co mma n d s

~ V i m i s co m m an d - d r i v en

Typically from N ormal mode

Though there are commands in other modes too

Three basic types of commands:
N orm al-mode comm ands take a count before!

Normal-mode operators take a count before and an argument after!
Command-line mode commands introduced by a colon, take a range before
and arguments after!

Tip 4: Learn your alphabet

Vi m's normal-mode commands are the most frequently used

M ost users use only a smal l subset

As an exercise, go through the keyboard...

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 damian@conway.org!

~ Almost every key {and shifted key, and control key! does something in v i m

How many do you know?

~ How many do you use regularly?
~ Increase your repertoire

Tip 5: Qui t smarter

~ The usual way people quit {from Normal mode! is:

: q

No w r i t e s i n c e l a s t c h a n g e a d d ! t o o v e r r i d e !

: q

~ T h er e 's an ab b r ev i a t i o n :

: w q

~ T h er e 's an ab b r ev i a t ed ab b r ev i a t i o n :

X

Or directl y from N ormal mode:

Z Z

Tip 6: Learn to move

~ M ost v i m u ser s k n ow th e b asi c cu r sor m ot i on s o f N or m al m o d e.

h 1

3

~ There are also higher-level motion commands and operators

~ For w ords, lines, and other "text objects"

W o r d m o t i on s

~ T o m ov e f or w ar d to th e star t of th e n ex t w or d : w

~ To move backw ards to the start of the previous w ord: b

~ T o m o v e f o r w ar d t o th e en d o f t h e n ex t w o r d : e

~ To move backw ards to the end of the previous w ord: ge

~ "Words" are considered anything that is delimited by non-identifier characters
M astering Vim

copyright ! Thoughtstream Pty Ltd, 2006
 damian@conw ay .org!

All a ' s * u s i I» s r I d
d el i m i t er i n st ead

Li ne and paragraph moti ons

~ To move to the start of the current line; 0 zero character!

~ To m ov e to th e st ar t of th e f i r st w or d o f th e cu r r en t l in e: "

To m ove to the en d of the current l ine: $

T o m ov e to th e st ar t of th e n ex t l in e: < CR>

~ To move to the start of the previous line: � minus sign!

To move to the start of the current paragraph: $

~ To move to the end of the current paragraph: >

A paragraph is delimited by empty lines not blank lines!

M i sce l l a n eo u s m o t i o n s

To move to the top of the buffer: gg

T o m ov e to th e en d of th e b u f fer : G

To m ov e to l ine n: nG or ngg

To move to the point p percent through the buffer: g%

~ Tip: if you:

: s e t s h o w c md

...you are shown the partial commands as you type them

M atchi ng deli mi ters
tritri }d ~»

To move the matching bracket oi a }... }, ...}, or [...] pair: a

~ By default, v i m only matches {...!, ...!, and [...]
But you can extend that to rvhatever pairs you like:

set mat c hp a i r s+=< : > , « : »

~ Even to "pairs" that aren't normally considered pairs:

set mat c hp a i r s+== : .

Repeated moti ons

~ Tedious to have to type i l l 1 1 to move five chars left

~ Instead can type: 51

Mastering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 damian@conway.org!

~ Likewise, up three lines: 3k

~ Likewise, ahead four paragraphs: 4 >

Scrolling a large huger

To scroll Forw ard one w indow 's w orth of text : <CTRL - F>

~ To scrol l Dow n a hal f w in dow 's w orth of text : <CTRL � D>

To scroll Up one half window's worth of text: <CTRL- U>

~ T o scr ol l Back a f ul l w in d ow 's w or th of t ex t : < CTRL - B>

Tip 7: Keep track of where you are

Type <CTRL- G> to be told where you are

Type @<CTRL- G> to be told more precisely where you are
Better sti l l , enable th e ruler :

: s e t r u l e r

Show s: <line>, <column> <percentage>

But the information the ruler shows is highly configurable

See: :help rulerformat
: he l p s t at u s l i ne

~k ~k ~%~i ,s.Phr~ t ~ '
Tip 8: Keep track of where you were

In Normal mode, you can leave a mark at any cursor position

Just type m<char >

For example:

Then to go back to that mark, you type a backtick: <same char >

T h at i s:

h

~ Or, to go to the start of the line containing the mark, type a single quote:
' < s a m e c h a r >

' h

If you use a lowercase letter, the mark is per-buffer
M astering Vim

Copyright ! Thoughtstream Pty Ltd, 2006
{damian@oonvr ay.org!

~ If you use an uppercase letter, the mark is global
For example..

: e d i t s ome o t h e r f i l e < CRp

Q

~ The Q would immediately switch your buffer to the file in which the mark was
set, then jump to the mark
You can see all the marks you'r e set by typing: : mar k s

Edi ti ng wi th marks

One of the most important uses of marks
As a "moti on" for other editing commands

For any command that takes a motion after it...

~ ... such as c, d, y, >, etc! ...

...you can use a jump-to-mark motion as well
~ For example, to delete several hundred lines of code...

~ ...m ov e to th e st ar t of th e cod e...

~ ...set a "st ar t " m ar k : ms

~ ...m ov e to th e en d of th e cod e...

~ ...delete b ack to th e "star t " m ar k : d s

Tip 9: Use v ~m's own navigation marks

~ Vi m sets certain non-alphabetic marks automaticall as you work
The most valuable is double backtick, the context mark:

takes you to the last place you jumped from
 where "jumped" means searched, used G, or returned to a mark!
A handy trick when working on two regions of a file...
...set the context mark at the first region: m

...jump to the second region...

...then between the tw o regions

Another handy "Where was I?" mark is backtick-doublequote:

This is where you were last time you exited the current file
A u sefu l sh el l al i as:

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 dami an' onrvay.org!

> al i as v X! vi m +norma1V X'V A"
~ vi m also keeps a list of all your jumps within a file

You can use <CTRL-0> and <CTRL- I> to step back and forth through the list

Tip 10: Learn how to change text efficiently
~ You can get into Insert mode via:

i : Start inserting before the current cursor position
~ r : Start inserting before the start of the current line
~ a: Start inserting after the current cursor position
~ A: Start inserting after the the end of the current line
~ o : Start inserting on a new line below the current line
~ 0 : Start inserting on a new line above the current line
~ s : Delete the current character and start inserting from there

Ns: Delete the next N characters and start inserting
~ You can get into Replace mode via:

~ r : Replace the character under the cursor then return to Normal mode
R: Replace characters from the current cursor

~ c <moti on>: Replace from the current cursor position to where the motion
r ea ch es

~ C : Replace the current l ine

Tip 11: Repeat yourself numerically
~ If you prefix any of the preceding commands with a number, it is repeated that

many times

~ For example:
3 0 a - < Z SC>

~ ...produces

~ L ik ew i se:

5 o P l e a s e ! < E SC>

~ ...produces:

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006

 damian@conmay.org!

P l e a s e !

P l e a s e !

P l e a s e !

P l e a s e !

P l e a s e !

~ You can also repeat the most recent editing command quickly with:

For example, the earlier begging could also be achieved with:

OP l e a s e ! < E S C>

~ Has the advantage that you can simply stop when you have enough...

~ ...rather than having to guesstimate how many beforehand....

Tip 12: Fix your deletions

Typing a backspace/ delete in either editing mode deletes the character
preceding the cursor
Normally you can only backspace back to the point where you started
inserting/ replacing
However, v i m lets you set an option that extends the reach of deletion

For example:

: set back space=st ar t " Can del e t e back p as t s t ar t of edi t

: set back space=i ndent " Can del et e back p as t aut oi ndent i ng

: set back space=col Can del et e back t o p r evi ous l i ne

Typically you want all three:
: se t b ac k sp ac e= i nden t , eo l , s t ar t

Tip 13: Control your insertions

In either editing mode most characters you type insert that character...but not all
~ Many of the control characters have special insertion behaviours

CTRL- u licates the character in the same column on the preceding line

~ CTRL- E duplicates the character in the same column on the following line
CTRL- A inserts again whatever the most-recent inserted text was

~ CTRL- R inserts the contents of a register more later!

IVl astering Vim
Copyright C Thoughtstream Pty Ltd, 2006
 damian@conway.org!

~ CTRL-R= evaluates an expression and inserts the result
~ CTRL- T inserts a tab at the start of the line without moving the insertion point!

~ CTRL � V inserts the next character verbatim even i f i t's normally a control
character!

CTRL � W deletes the word preceding the cursor

CTRL- 0 takes you back to Normal mode for one command
Handy, for example, to clean the rest of the line. "QD

Tip 14: Search smarter

To search for instances of a regex within a buffer:

/ <p a t t er n><CR>

~ Takes you to the next piece of text after the cursor that matches the pattern
~ To go the second match, either

/ < CR>

~ Or more commonly!:

~ To sear ch b ack w ar d s:

? <p a t t e r n >< CR>

~ And backw ards again:

N

~ Can configure vi m to wrap the search around from the end of the buffer back to
th e st ar t :

: s e t w r a p s c a n

~ Regexes used are sed-ish, but vi m extends them considerably
Comparable in power to Perl, but numerous differences in syntax
Appendix A summarizes the syntax

Searchi ng wi thin a l ine
Often you just want to ump to a particular character within the current line

~ There's a short-cut for that : f <char > for "find" !

~ For example:

You can~jam backwards too: Fcctrar >

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006

 dami an@conan.ay .org!

If you put a count before the f you' re jumped to the Nth instance:
5 f u

Searchi ng f or exi sti ng word

If you have the mord you mant to search for already under your cursor...

...just type r to find the next instance

...or 4 to find the previous

Case i n!sensi ti vi ty

~ Normally vi m searches are case-sensiti ve

~ If you would prefer case-insensitive set the following option:
: set i gno r ec a se

~ Better still, if you'd like "partial sensitivity", set thi s option as well :

: s e t s ma r t c a s e

~ nSmartcase" overrides the "ignorecase" behaviour whenever your pattern
includes any uppercase e ers

~ Even with these options set you can still be specific when you want
Use the Nc specifier within the pattern

~ Everything after it within the pattern will be match case-insensitively, no
m at t er w h at

~ Likewise, there's NC to unconditionally turn case sensitivity on

Tip 15: Use searches as motions

Because every successful search results in a movement of the cursor� .
...every search command can be used as the <motion> for any other operator
For example, to yank every line up to the END line of a file:

y / END <CR>

0 d + p~e l % h ~
~ yp

d f ;

Often, of course, you'd rather delete everything up to but excluding the
semicolon or whatever!

tnctudi~n the

So v i m also has the t <char > or "to"! command

By itself, jumps to the character before the specified character
M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 damian@conway.org!

~ As a motion, specifies uup to but excludin ":

Tip 16: Preview your search results
vi.m has an option that causes it to s~how ou where your search

: s e t i n c s e a r c h

Looks y type the search pattern, and highlights first match
Only jumps to that position when you hit <ENTER>
If you' re looking ahead and hit <ESC> instead...
...cancels the search and returns cursor to former posi tion

Very handy to "peek-and-returnu

Tip 17: Highlight your search results
Often the match you find isn't the one you want
So it can be handy to be shown where else in the buffer you should look
Search highlighting makes that easy:

: s e t h l s e a r c h

Now every match of every search will be highlighted
Search still jumps to the first match
But now you can see where else you might need to look

However, the highl~i tLti~n ersists until our next search

Annoying

To get rid of it, type:
: n o h l s e a r c h

Tip 18: Search and destroy

You can also tell v i m to find a match and replace it :

: s ! <p a t t er n > ! <r ep l ac emen t >

With find the next match and replace that one instance

~ You can specify a range of lines to restrict the search to:
: 10 , 3 3 s / <pat t er n> / <r ep l ac emen t >

M astering Vim
Copyright ! Thoughtstream pty Ltd, 2006

 damian@conmay.org!

Will then replace first instance per line in that range
~ If the range consists of a single number, only that line is modified
~ For example, only change the first line:

: 1s / <p a t t er n> // <r ep l ac emen t >

If you indude a sign, then the range will be relative to the current line:
: - 10 , +33s / <p a t t er n> / <r ep l a c emen t >

~ That means: "from 10 l ines abov e the cursor to 33 l in es below i t "

If you use a semi-colon instead of a comma:
: - 10 ; +3 3s / <pat t er n > / '<r ep l a c emen t >

...then the end of the range is relative to the start of the range, instead of relative
to th e cu r r en t l i n e

~ So the semicoloned v ersion m ean s: "from 10 l ines above the cursor for the
following 33 lines"

~ In a range, . means the current line, $ means the last line
For example, to substitute on each line in the rest of the file:

: . , $s / <p a t t er n> / <r ep l a c emen t >

~ There's also a short-cut for makin the range "the next N lines"

~ If you enter a number before the colon:
9 9 :

: . , + 9 8

You can specify the entire fi le as the ran e:
: 1 , $ s / <p a t t er n> / <r ep l ac emen t >

~ A n d th er e's a sh or t -cu t :

: %s / <pat t er n > / <r epl ac ement >

You can also specify a range of lines according to their contents

Use / <pat >/ to specify "the next line that matches <pat>

~ Use ? <pat >? to specify "the previous line that matches <pat>"

For example, to substitute only within the body of an HTML file:
1G

: / <body>/ r / <N/ body> / s / <I > / /

~ You can add an offset after either range specifier
~ For example, to match from the line after the previous instance of nfoo"...

...to ten l ines before the end of th e fi l e:

: ?f oo ?+ 1 , $- 10s / <p a t t er n> / <r ep l ac emen t >

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 damian@conw ay.org!

~ Note that many other "colon" commands take ranges

~ The specification syntax is always the same

M ulti ple substi tuti ons

~ A substi tution only substitutes one match per line

~ Even if you use the % range, you get one substitution on every line
~ To specify a substitution of every match on a line...

~ ...append the / g modifier:
: s / <p a t t e r n> / <r ep l ac emen t > / g

: 10 , 33s / <p a t t er n> / <r ep l ac emen t > / g

: %s / <p a t t er n> / <r ep l ac emen t > / g

Ca u t i ou s su bst i t u t i o n

~ To request a confirmation on each replacement append a flag: / c
: %s / c a t / f e l i n e / c

Substi t ute agai n

Often you want to re eat the last substitution on another line
~ You can do that w ith just:

: s < CR>

~ O r u se th e N or m al -m od e sh or t cu t :

~ You can repeat the substi tution globally with:
: %s

~ O r :

g &

~ Handy to "get it right" on one line, then apply everywhere

Tip 19: Copy shamel essly

~ To copy some text, you "yank" it, w ith the y operator

~ To copy a l ine: yy or Y

To copy a word : yw

To copy a paragraph: y y
M aster ing V im

Copyright ! Thoughtstream Pty Ltd, 2006
{dami an@coney .org!

Pasti ng text

~ Once you' ve copied or cut some text, it can be pasted elsewhere using p
~ For example, to move a paragraph containing the word "rabbit" to the end of

t h e b u f f er :

/ r a b b i t < CR >

d a p

G p
~ p alwa s pastes af ter the cursor

~ ...like an a if you copied/ cut less than a full line

~ ...like an o if you copied/ cut a full line or more

~ You can also paste before the cursor: with p

I ndented pasti ng

~ To paste lines above or below the current line...
~ ...but w ith the same level of indenting:

1p

] p

Targeted copy-and-paste

~ If can move a chunk of text to a specific locati on in one command:

: <r a n g e >c o p y < t a r g e t >

~ The <target> uses the same specification syntax as ranges

~ For example, to copy the current line to the end of the file
: c opy $

~ For example, to copy the current paragraph to after the first " END " marker:
: ?" $?, / " $/ copy / END /

Targeted cut-and-paste

~ Instead of copying text to a target, you can move it:
: r a n g e >mo v e < t a r g e t >

For example, to move the next 10 lines to the start of the file:
: + 1 , + 1 0mo v e 0

M aster ing Vim
Copyright ! Thoughtstream Pty Ltd, 2006

 damian@conway.org!

Tip 20: Store text in registers

Every y or d command stores the copied text in a special location
Known as a register

The default register is nameless

Other registers are named with lowercase letters: ua u b "c etc.
To yank text into a named register, specify the register name before the yank
co m m an d :

u ayW

Likewise to delete, but save the deleted text in a named register:

" z d $

To paste the contents of a register, name the register before the paste command:
" ap

In Insert mode, to "type" the contents of register "n

< CT RL - R> n

In Insert mode, to "insert" the contents of register "n

< CT RL - R > < CT RL - R> n

Registers are useful for keeping snippets that you need to use over and over
It you name the register using an uppercase letter, it's the same as the losvercase
v er si o n ...

...except that the yanked/deleted text is appended to the register instead of
overwriting it
Useful for trawling a document and picking out the bits you want

Tip 21: Travel through time

~ Vi m has the ability to undo arbitrarily many changes to a buffer
~ And to redo them if you decide they were okay after all
~ To undo the last bu ffer ch an e: u

~ Note that, unlike v i , v i m's undo doesn't undo a preceding undo

~ To redo the last undone ch an e{s! : <CTRL - R>

M astering Vim
Copyright O Thoughtstream Pty Ltd, 2006
 damian@conway.org!

B r a n ch ed u n d o

~ Prior to version 7, if you undid some changes then made a new change .

~ ...vi m threw away all the undone changes
~ Since version 7, instead of discarding this "alternate history"...

~ ...v i m branches out into a new history

~ ...bu t rem em b er s th e ol d on e

~ The u and <CTRL- R> commands run you back-and-forth within the most
r ecen t h i stor i cal b r an ch

~ But every change in every branch is timestamped

~ So you can go back / forward to any particular point in your editing history

~ Move back in time through different branches! with: g-
~ Move forward through different branches! with: g+
~ Move back/ forward to a particular time with:

: e a r l i e r < t i me o f f s e t >

: l a t e r < t i me o f f s e t >

~ For example, to return to the state the buffer was in 10 minutes ago:
: e a r l i e r 1 0m

~ Then to move forward again to the state 30 seconds after that time:
: l a t e r 3 0 s

Tip 22: Read and mrite f i1es eff iciently

~ T o ed i t a f i l e f r om w i th in v i m:

: e d i t . < f i 1 e n a me >

: n e x t < f i 1 en ar ne !

~ The difference is that : next autowrites if the aut ovr i t e option is'set

~ To edit the next/previous file listed on the command Ene:
: n e x t

: p r e v

~ To edit the file you just left:
: n e x t ¹

~ To edit the file whose name/path your cursor is « « '-

g f

Readi ng buff ers

To read the contents of another file into the buffer, in~sertin them belose the
cu r r en t ' e :

: r e a d < o t h e r f i l e n ame >

To read in the output of another process, inserting it below the current line:
: r e a d ! <p r o c e s s >

For example:

: r ead !GET ht t p : / / www.mycor p .corn/ st d di scl ai mer . ht ml

If you specify a line-number before r ead, the new text is inserted after that line
The commonest use is to insert something at the very start or end of a buffer:

: Or e a d s t d h e a d e r

: Gr e a d s t d f o o t e r

Tip 23: Use a f i l ter

~ Can also write buffer to a process then read back in fro
b f f er r an ge i s 8! . . .

: a ! s o r t

Can specify other ranges of lines:
" So r t c u r r e n t l i n e a n d n e x t 2 0 l i n e s . . .

: . , ~ + 2 0 ! s o r t

~ Or filter a single l ine:

! ! w c

~ O r f o r a m o t i o n :

S o r t f r o m h e r e t o E OF . . .

! Gs o r t

Sor t su r r ou nd i ng p ar agr ap h . . .
! i p sor t

Vi aster ing Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 damian@conway.org!

Tip 24: Sort internally

But what if your system doesn't provide a sor t utility?
Vi m has its own built-in sorting mechanism:

: s o r t

A n d r ev er se so r t :

: s o r t !

~ M any convenient options;
Sor t numer i cal l y { by f i r st number i n l i ne !

So r t numer i c a l l y by f i r s t h ex adec i ma l numb er !

: s o r t n

: s o r t x

: s o r t o

: s o r t . i

Sor t numer i c a l l y { b y f i r s t oc t a l numb er !

So r t c a s e - i n s e n s i t i v e l y

: sor t u Remov e dup l i c at e l i nes af t er sor t i ng

: sor t / pat t er n/ Sor t af t er ski ppi ng t ext mat ched by pat t er n

: sor t r / pat t er n/ Sor t usi ng t ext mat ched by pat t er n

~ The options can be combined:
: sor t i ur / " . %{ 6! / Sor t case- i nsensi t i v e , uni que , on 1st 6 char s

Tip 25: Remember your history
Whenever you execute a "colon" command or a search, vi m remembers it
Next time you type a colon or a slash, you can trawl through that history
Just hit the <UP> or <DOwN> key

When you find the one you want, just hit return
If you specify part of the pattern or command, the arrows only show
patterns/ commands with the same prefix
Alternatively, you can edit the history to create a new command or search
Instead of :, type q : to initiate the command
Instead of / , type c{/ to initiate the search
Navigate to the command/ pattern you want
Modify it using the usual text-editing commands
When you hit <RETURN> the modified line will be executed

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006

 damian@conway.org!

Tip 26: Autocomplete your text

~ Once of the most u seful featu res of m odern shell s

No longer have to type in full filenames

Just the fir st few letters...

...th en h i t < TAB>

Typically shown the list of possibilities

If you' re lucky, subsequent <TAB>s cycle each in turn
Likew ise for comm and nam es at the star t of the l ine

Fi lename completi on

~ C an d o th e sam e i n v i m...

~ ...when entering a command that expects a fi lename

~ : edi t or :wr i t e, for example

~ Type the first few letters and hit < TAB> to cycle the possibilities
~ Alternatively, type <CTRL- A> to insert all possibilities

1Vavigati ng a completi on

~ Once completion is active, <TAB> cycles to the next possibility
~ So d o es < CT RL - N>

~ To go back to a previous possibility : <CTRL- P>

Smarter completi on

~ You can configure vi m to be even more helpful
~ Depending on how you prefer your completions
~ Using the wi l dmode command:

s e t w i l d mo d e = l i s t

~ Now completions just list the possibilities but never fill them in!
~ O r :

s e t wi l d mo d e = l i s t : l o n g e s t

Now completions list the possibilities and fill in the longest common prefix
~ O r :

set wi l dmod e=l i s t : l o n ge s t , f u l l

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
{damian@conw ay.org!

~ Now completions list the possibilities and fill in the longest common prdix
~ And subsequent < TAB>'s at the same place cycle the full possibilities
~ See : hel p wi l dmode for the numerous other possibilities

~ You can also change the character that initiates completion;
: s e t w i l d c h a r = < E SC>

Selecti ve completi on

~ You probably never want to complete to a . o or . ob j file
~ So you can tell v i m that:

set wi l d i gnor e+=* . o

se t wi l d i gno r e+=* . ob j

se t wi l d i gno r e+=c o r e

Other f orms of completi on

~ Completion is so useful that vi m supports it just about everywhere
~ When typing a "colon" command, <TAB> completes valid ex commands
~ When typing in a shell command after a : ! !, <TAB> completes valid shell

co m m an d s

After a : set , c Tran> completes all valid v i m o tion names

I.U i f : , ~ l ' ' g

Tip 27: Complete your text too
~ Once you' re hooked on completion, man, you need it everywhere
~ Including in the text you' re editing
~ So vi m provides the <CTRL- X> mode
~ While in Insert or Replace mode, type <CTRL-X> after a partial "wordn
~ Then select the type of completion you want by typing a second control key...

Fi lenamelf i lepath completi on

~ <CTRL-X><CTRL-F> completes filenames and filepaths

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006

 damianCcttconMfay.org!

Def i ned symbol completi on

<CTRL- X><CTRL- D> completes predefined C preprocessor symbols

iotd e f i n e d e f FUNC CAL L f o * o !

r e s u l t = my d e < CTRL - X> < CTRL - D>

~ Can also change what it thinks a definiti on is

~ Set the def i nc option to a pattern
For example, to rom tete defined Perl subroutines:

: s e t d e f i n e = " N ' i s * s u b

~ Th en :

sub de f ene s t r at e ex c ep t i o n

$r e s u l t = d e < CTRL - X> < CTRL - D>

I dentif i ev completi on

<CTRL- X><CTRL- N> completes identifiers from the current file

Identifiers are sequences of "keyword" characters
~ The default keyword characters are: '@','0'-'9',' ','a'-'z','A'-'Z'

Can change this default by setting the i skeywor d option
For example, to handle C identifiers:

: set i s k eywo r d=a- z , A- Z , 48- 5 7 .

~ Can also sou ~ i a list of "standard" identifiers that should always be considered
for completion

~ Put the list in a separate fi le

Then tell the completion mechanism to use it as well :
set compl et e+=k- / dat a/ my st d i dent i f i er s

~ The leading ' k ' indicates that the file is laid-out like dictionary file
~ That is, one w ord per line

~ C an al so se ar ch f o r i d en t i f i er s f r o m 4 i n c l u d e fi l es

U se < C T R L - X > < C T R L - I >

Other completi ons

~ <CTRL- X><CTRL- L> completes existing lines

<CTRL- X><CTRL- K> completes identifiers from a dicti onar fi le

~ <CTRL- X><CTRL- T> completes related identi6ers from a thesaurus file
M astering Vim
Copyright O~ Thoughtstream Pty Ltd, 2006
 d amian@convttay.org!

~ See :

: he l p i ns- compl et i on

Tip 28: Vi m is a f ile browser

~ Vi m comes with a standard plug-in that helps navigate directory structures

~ If you edit a directory, vi m acts like a simple file browser
~ Hit <ENTER> to descend to a particular file or subdirectory

~ Hit � to ascend to the parent directory

~ H i t D t o d el ete a f i l e

~ H i t R t o r en am e a f i le

~ Hit s to switch between sorting by name, time, and size

~ Hit r to reverse the sorting order
Hit i to change how much information you' re shown and how compactly!

~ Hit p to preview a file in a separate window
~ Hit c to change the current directory to the directory under the cursor
~ H it d to create a new di rectory

~ Hit o to open the selected dir / file in a horizontally split window
~ Hit v to open the selected dir/ file in a vertically split window

BTip 29: Explore v~m's many options

Most of v i m's interface and behaviour is configurable

Mostly by setting specific configuration options
Can set them ad hoc during an editing session

U se th e : s e t com m an d

More effective to set them "permanently"

Add them to your . vi mr c file in your home directory!
To turn a boolean option on:

: s et <' op t i on n ame>

T o tu r n i t of f :

: s e t n o <op t i o n n ame >

~ To toggle it:

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006

 damian@comvay.org!

: se t i nv <op t i on n ame>

: set <op t i on n ame> !

To r eset i t t o d efau l t :

: se t <op t i on n ame>&

To turn on an option that takes a value
: set <op t i on name>=<op t i on val ue>

~ To add to/ remove from a list of option values:

: se t <op t i on n ame>+= <n ew va l ue>

: set <op t i on name>- =<exi s t i ng val ue>

7 ~ ll
: s e t

Tip 30: Show your line numbers
~ Some programmers like to see line numbers all the time:

: s e t n u mb e r

Tip 31: Constrain your line widths
Most people prefer their editor to wrap text lines that get too long
Typically at 72, 78, 79, 80, or 132 columns
To tell v i m to do that as you insert:

s e t t e x t w i d t h = 7 8

Alternatively, you can tell vi m to wrap a certain number of characters before
the edge of the terminal :

s et wr apmar g i n=2

Recomm end t ex t wi dt h rath er than wr apmar g i n

...because v i m won't automaticall rewra existing lines when the terminal
width changes

M astering Vim
Copyright Oc Thoughtstream Pty Ltd, 2006
 damianOconway.org!

Tip 32: %rite before you leave

~ By default, before leaving a buffer, vi m asks you whether you want to save the
c o n t en t s

~ You almost always do

~ So m ak e i t th e d ef au l t :

: s e t a u t o w r i t e

Tip 33: Configure your . vi mrc file
Once you' ve set your options the way you prefer them, exit you editor...and
they' ll all be lost!
Setting individual options every time you edit is impractical
So you can save the settings you prefer and have them automatically loaded
each time you edit
Such configuration settings are stored in a file named . vi mr c
Or v i mr c on certain fil esystems

Your personal . vi mr c lives in your home directory: - / . vi mr c
It's a plain text file that you can create and edit using vi m!!
Or, better yet, start up a vi m session from your home directory...
...set your preferred options and modes...
...then type:

: mk v i mr c

Your options will be saved in a new . vi mrc file in your home directory
You can then add new configuration features by editing the file directly

Tip 34: Set your options by browsi ng
vi m has so many options that setting them can be daunting
In fact, just r emember i ng them can be a challenge
So vi m provides an option brozuser to help
Start it up by typing:

: opt i ons ~ r es i ze

Navigate using the normal motion commands
Hit <ENTER> on a section name to j~um to that section's o tions

M astermg Vrm
Copyright ! Thoughtstream Pty Ltd, 2006

 damian@comvay.org!

~ Hit <ENTER> on a description line for the full help entry
~ Type z z to get close the help window!
~ Hit <ENTER> on a boolean option to toggle it

For options that take values, edit the value and then hit <ENTER>

~ Once you' re happy with the options you' ve set, you can save them as before:
'cd
:mkvimrc

Tip 35: Defang those tabs
~ Tabs create more editing problems than any other character
~ They' re ill-defined
~ They change appearance under different defaults
~ They' re best avoided
~ Or, at least, restrained

Sticking with eight-column tabs
~ If you' re forced to use eight-column tabs...

...you can still have your cake and eat their tabspacing too
~ Vim provides a "soft tabs" option:

:set softtabstop=4

When this option is set, vim uses the standard 8-column tabs
~ But doesn't insert a tab when you hit < TAB>

Instead, it inserts 4 spaces on the first < TAB>

~ ...and then removes them and inserts a tab on the second < TAB>
~ So it feels like you' re using 4-column tabs
~ ...and looks like you' re using 4-column tabs
~ ...but your code still looks right under 8-column tabspacing
Adjusting tabs
If you want to adjust the tabs in a file from one tabspacing to another:
:set tabstop=<current tabspacing>
:retab <new tabspacing>

Mastering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
{damianOconway.org!

~ For example:

: se t t ab s t op = 8

: r e t a b 4

~ If you go from a smaller to a larger tabspacing, some tabs will be replaced with
sequences of spaces

~ Which means that : r et ab does not "round-trip"

For example, if your t abst op is originally 4, then:
: s e t t ab s t o p = 4

: r e t a b 8

: r e t a b 4

~ ...will leave what were originally single tabs as 4-space sequences

~ U se :

: r e t a b ! 4

~ ...to tell vi m to convert multiple-space sequences to tabs where feasible

RepIaci ng tabs as you type

~ If you set the expandt ab option:

: s e t e x p a n d t a b

...vi m replaces every tab you type with the appropriate number of spaces

...as determined by the current value of t abst o f

~ If expandt ab is set when a : r et ab is performed, all tabs are expanded to
sp aces :

: se t ex p andt ab

: r e t a b

Tip 36: Indent cleverly
If you decide to have tabs defanged using the expandt ab option you create a
different problem
The <TAB> key and shift commands « and» ! pJ ft ~ < t7' "J''!l~<' ,
Under expandt .ab they insert a fixed number of spaces

So things stop lining up
You can overcome that, by telling vi m to "round down" any tabspacing:

s e t s h i f t r o u n d

~ Then tabs and shifts always tab and shift to the next tabstop
M astering Vim

Copyright ! Thoughtstream Pty Ltd, 2006
 damian@conway.org!

Smarter indent ing

~ Normally, if you' re expanding tabs, a tab inserts one t abst op worth of space
everywhere
That's fine, except at the start of a line

~ Because the shift commands insert one shi f t wi dt h worth of space instead

So your indenting can get messed up if you set shi f t wi dt h and t abst op to
d i f f er en t v al u es

~ D on 't d o th at !

~ But, if you must, you can tell vi m to use shi f t wi dt h for column-1 tabs.
: s e t s ma r t t a b

To t a l t a bu l a r co n t r o l

map <si l ent > TR : set expandt ab<CR> : %r et ab ! <CR>

map <si l ent > TT : set noexpandt ab<CR> : %r et ab ! <CR>

f unct i on , Conver t ToTabSpac i ng newt abs i ze !

l et wa s ex p anded = 6ex p and t ab

n o r ma l T T

ex ec ut e " s et t ab s t op = " a : n e w t a b s i z e

e x e c u t e " s e t s h i f t w i d t h = " . a : n e w t a b s i z e

i f wa s ex p anded

n o r ma l T R

e n d i f

e n d f u n c t i o n

map <si l ent > T8 : cal l Conver t ToTabSpac i ng 2 ! <CR>

map <s i l ent > Tt : cal l Conver t ToTabSpac i ng 3 ! <CR>

map <s i l e nt > T$: c a l l Co nv e r t ToTab Sp ac i ng 4 ! <CR>

map <s i l en t > T% : c a l l Conv er t ToTab Sp ac i ng 5 ! <CR>

map <s i l en t > T " : c a l l Conv e r t ToTab Sp ac i ng 6 ! <CR>

map <si l ent > T& : cal l Conver t ToTabSpac i ng 7 ! <CR>

map <s i l ent > T* : cal l Conver t ToTabSpac i ng S! <CR>

map <s i l ent > T : cal l Conver t ToTabSpac i ng 9 ! <CR>

Mastering Vim
Copyright C Thoughtstream Pty Ltd, 2006
 damian. convray.org!

~ If you frequently have to work with "alien" tabspacings a simple set of macros
can make life very much easier:

~ TT inserts tabs everywhere possible

~ TR removes every tab via expandt ab!

~ The Conv er t To TabSpac i ng function ensures tabs are in effect...

~ ...then sets new v alu es for t ab s t op and sh i f t wi dt h

~ ...then re-expands to spaces, if you were originally expanded
~ The mappings TS through T then provide quick conversion to the

corresponding tabspacings

Tip 37: Recover after a disaster

~ Inevitably your vi m session will eventually crash
~ Not because v i m is unreliable it 's incredibly reliable!
~ But because your hardware, or operating system, or fil esystem, or network fails
~ As you edit, v i m periodically swaps out the current state of your buffer
~ Writes it to a fi le in the same di rectory

~ If your vi m session is prematurely terminated, can recover most of your work
f r o m t h at fi l e

Recoveri ng af ter a crash

~ For example, if you were editing:

> v i m my v i t al dat a . t xt

~ And the session w as unexpectedly terminated, try:

> v i m - r my v i t al dat a . t xt

~ If there is a swap file available, vi m will use it to reconstruct your buffer
~ It's typically a good idea to immediately save that buffer under a related name:

:w my v i t al dat a . r ecover ed

~ ...just in case things fall over again
~ You can find all the existing swap files using:

v 1 m � e

~ t.e. with no filename!

Preventi ng mi shaps

Vi m also uses the swap files to detect when you attempt to edit a file that
another v i m session is already editing

M astering Vim
copyright ! Thoughtstream Pty Ltd, 2006

 damian@conmay.org!

~ If you do that, the second vi m process will inform you:
E 3 2 5 : AT T ENT I ON

Found a swap f i l e by t he name "my v i t al dat a. swp"

own ed by : d ami an d at ed : Mon May 22 15 : 59 : 22 2006

f i l e n ame : - d ami an / Ta l k s / Vi m/ my v i t a l d at a

mo d i f i ed : y e s

u s e r n ame : d ami a n h o s t n ame : Go r t . l o c a l

pr oc e s s I D : 2 84 9 s t i l l r u n n i ng !

Wh i l e op en i ng f i l e "my v i t a l d at a "

d at ed : Mon May 22 15 : 5 9 : 0 7 2 006

 1 ! Anot her p r o gr am may b e ed i t i n g t he s ame f i l e .

I f t h i s i s t h e c as e , b e c ar e f u l not t o end up wi t h t wo

di f f er e nt i n s t anc e s o f t h e s ame f i l e wh en mak i n g c h an ge s .

Qu i t , o r c ont i nue wi t h c au t i on .

 2 ! An e d i t s e s s i on f o r t h i s f i l e c r as hed .

I f t h i s i s t h e c a s e , u s e " : r ec o v e r " o r " v i m - r my v i t a l d at a "

t o r ec ov er t h e c h an ge s s ee " : h e l p r ec ov er y " ! .

I f you di d t hi s al r eady , de l et e swap f i l e "my v i t al dat a . swp "

t o av o i d t h i s me s s a g e .

Swap f i l e "my v i t al dat a . swp " al r eady ex i st s !

[O] pen Re ad - On l y , E ! d i t anyway , R ! ec ov e r , Q! u i t , A ! bo r t :

~ "Open Read-Only" or "Abort" is almost always the correct response here

Improvi ng your chances

~ Normally v i m writes out your buffer to a swap file every 200 keystrokes
~ And doesn't always sync that swapfile to disk when it's written that depends

on your 0 / S and filesystem!
~ So you could potentially lose 400 or more!! keystrokes in a crash

Aslong asyou d ' d h d k ' , your session will be
m u ch m o r e r eco

: se t up d at ec ount = 10

: s e t sw a p s y n c

Then you' ll never lose more than about 20 keystrokes

~ However both these may adversely affect your interactivity, as well as
compromising battery life on laptops

~ swapsync in particular

1Vi aster ing V im
Copyright Cc Thoughtstream Pty Ltd, 2006
 damianC+convray.org!

Tip 38: Make a backup

~ Normally when you write a file:

: w r x t e

: wr i t e < f i l e n ame !

, . A b f f

Tip 39: Edit visually

~ One of the challenges of vi m is remembering the many ways to specify what
your command is suppose to act upon

~ For example:
x d e l e t e c h a r a c t e r

1 0 x d e l e t e 10 c h a r a c t e r s

d i w d e l e t e i n n e r wo r d

d aw d e l e t e a wo r d

d d d e l e t e o n e l i n e

dt z del et e up t o next l et t er ' z '

df z del et e up t o and i nc l ud i ng next l et t er

d i b d e l e t e i nner ' { ' ' } ' b l oc k

' z '

dap del et e a par agr aph

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006

 dami an@con+r ay .org}

If you want a little more safe

: s e t b a c k u p

Now v i m will make a backup of the file before overwriting it

The backup has the original filename with a � or appended
You can change that extension with for example!:

set b ac k up e x t = . b ak

Normally, the backup is written to the same directory as the original file
But you can nominate another directory
For example:

set b ac k up d i r =- / . b ac k up s

There are numerous other options besides these: when to skip backups, what to
do with old backups, how to create the backup, etc.
For m or e d etai l s, see:

~ If you' re a visually oriented person, it's hell

~ So v i m provides visual modes as w ell

~ In these visual modes the usual command-target sequence is reversed
~ You first specify the area to be affected

~ Then specify the effect

Vi su a l m o d e

~ The simplest visual mode is Visual mode

~ You type v and you ' re in it

~ Then you move around, using any of the normal motion commands

~ As you move, vi m highlights from where you started to where you are now
~ Once you' ve selected the text you want, you type the command you want to

ex e cu t e

~ You can execute any "colon" command

~ Or any of the normal commands: y, >, � , etc.
~ For example:

vi ed

U2 7d

v ! d

~ Note that line-oriented commands colon commands, shifts, etc.! operate on the
full lines covered by the selection

Vi su a l - L i ne m o d e

~ Because you often do want to operate on complete lines, there's a second visual
m o d e

~ U se V i n st ead o f v

~ Selects entire lines as you move the cursor

~ N o m atter w h er e in th e l in e th e cu r sor i s

~ O th er w i se i d en t i cal t o v m o d e

Vi su a l -B l o ck m o d e

~ Th e f un k i est an d m ost u sef ul v i su al m od e

~ Enter it using <CTRL- V>

Selects a rectangular block from your cursor position to wherever you move

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 damian@con+ray.org!

~ Subsequent command is applied only to that block
Incredibly handy for adjusting table columns

~ Special commands for block mode
<CTRL- U> <mot i on>I <t ex t > Inserts text before block on every line

<CTRL � U><mori on>A<t ex t > Appends text after block on every line

<CTRL- U><mot i on>c<t ex t > Changes every line of block to text

<CTRL- U><mot i on>r <char > Changes every character in block to char

Ter mi nati ng block mode

~ lf you' re in block mode and decide you'd rather not be just hit <ESC>

Vi sual ly selecti ng text obj ects

~ Normally a visual selection extends from where you entered your visual
m o d e ...

~ ...to w herever your cursor is now

~ However, as well as using motion commands to specify your selection...
~ ...you can also use "text object" commands

~ For example, to indent the paragraph surrounding the cursor:
v i p >

~ Another handy variation joins all the lines of your current paragraph:
v 3.p J

Tip 40: Abbreviate your typing

~ It's tiresome to have to type in oft-repeated sequences

~ For example, your email or web address
~ O r stan d ar d tex t m ar k er s l i k e:

- - - - - c u t - - - - - - - - - - c u t - - - - - - - - - - c u t - - - - - - - - - - c u t - - - - - -

~ Or even just repeated tags like:
<b l oc k quot e><c i t e>

< / c i t e>< / b l oc k guot e>

So vi m provides an mechanism that allows you to specify abbreviations that
will be expanded when typed

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006

 damian@conw ay.org!

~ For example:

: abbr ev i at e hdc o ht t p : / / d ami an . c o nway . or g

: abbr ev i at e d ac o d ami an 8c onway . or g

: abbr ev i at e bqc <bl ockquot e><ci t e><CR></ ci t e></ bl ockquot e>
: abbr ev i at e - - c <CR>- - - - - c u t - - - - - - - - - cu t - - - - - - - - - c u t - - - - -

~ When the LHS of an abbreviation is recognized during insertion of on the
command line it is immediately expanded to its RHS

The expansion is exactly like typing it yourself
~ So, as long as you' re careful, you can be even cleverer:

: ab bqc <bl ockquot e><ci t e><CR><CR></ ci t e></ bl ockquot e><Up><TAB>

: ab - - c <CR>- - - - c u t - - - - - c u t - - - - - c ut - - - - <C- 0> : c ent e r <CR><DOWN>

R est r i c t i o ns on t h e L H S

~ There are restrictions on what you can use as an abbreviation

The LHS of an : abbr ev i at e must either consist entirely of keyw ord
characters i .e. be an identifier!

~ ...or it must consist entirely on non-keyword characters but end in a single
keyword character e.g. ¹ 1 or - - c or N=X!

~ ...or it must end in a non-keyword character, with the preceding characters
being anything you like e.g. 1¹ or c � or or z! !

~ You can't use whitespace in abbreviations

Expandi ng abbrevi ati ons

~ Abbreviations also require some trailing context to know they' ve been entered
~ That is, you have to type a non-keyword character after the abbreviation before

it will be expanded
~ The extra character you typed is inserted af ter the expansion
~ You can expand an abbreviation without trailing context by typing cTRL-]

Reviewi ng your abbrevi ati ons

~ If you type:
: a b b r e v i a t e

~ ...without an argument, you get a list of the active abbreviations

~ T o r em ov e an abb r ev i at i on :

: u n ab b r e v i a t e b q c

Mastering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 damian@conway.org!

~ T o r em ov e al l abb r ev i ati on s:

: a b c l e a r

Targeted abbrevi ati ons

~ Be careful though
A bbrev iati ons ar e activ e on the com m an d l ine too

~ To deactivate them type a literal <CTRL-V> before the abbreviation
~ You have to type hvo <CTRL-V> to get one though!

: a b b r e v i a t e " V " V - - c

~ On the other hand, abbreviations can be useful on the command line

~ For example, if you frequently need to save to a particular file:
: abbr ev i at e bak / usr / l ocal / t mp / backup / dami an / checkpoi nt

~ Ho~ ever, you' ll also get that expanded in inserted text

A better opti on is to use the i abbr ev and o abbr ev versions

With these you can tell vi m exactly where to expand the abbreviation
~ Only in insertions:

: i abbr ev bqc <bl ockquot e><ci t e><CR><CR></ ci t e></ bl ockquot e><UP><TAB>

~ Or only on the command line:
: cabbr ev bak / usr / l ocal / t mp / backup / dami an / checkpoi nt

Comput ed abbrevi ati ons
You can specify that an abbreviation should expand to the result of some
expression in the vimmish command language

~ For example, to have TS expand to the current timestamp:
: abbr ev i at e <expr > TS st r f t i me u%c u!

Or to have PPP expand to the last yanked text:
: abbr ev i at e <expr > PPP get r eg ' ' !

~ Or to have " " insert the contents of the preceding non-empty line:
: abbr ev i at e <expr > " " get l i ne sear ch ' XSX . * En' . * tM.' , ' b ' ! !

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006

 dami an@conan ay.org!

Tip 41: Map your commands

~ Abbreviations are great, but suffer from two major constraints: they' re only
available in Insert mode and on the command line, and they require an extra
character typed after them

~ Maps remedy both those problems anded as soon as the complete
u ired!

You can specify separate maps for Insert mode, Command-line mode, Normal
mode, Visual mode, and various combinations thereof

I nserti on maps

~ Insertion maps can be used instead of abbreviations:

: i map ww ht t p : / / dami an . conway . or g

: i map ee d ami an 8c onway . or g

: i map ; b <b l ockquot e><c i t e><CR></ c i t e>< / bl ockquot e><ESC>0

~ Maps have the advantage that they don't require an additional character to be
typed

~ They have the disadvantage that they don't require an additional character to
be typed

That means you need to be careful in selecting your map trigger
~ I~n ractice, abbreviations are better for content ex ansions:

: ab NAME Dr Dami a n Co nwa y

: ab ADDR Thought st r eam Pt y Lt d<CR>PO Box 668<CR>Bal l ar at

~ ...whilst i~ma s are better for behav ioural insertions
~ For example, if you don't use tabs and would prefer <TAB> to do word

completions:
: i maP <TAB> <C- N>

~ Now every tab character immediately acts like a <CTRL- N> completion request

X orma/ maps

~ The second advantage of maps is that they can be applied in Normal mode

For example, if you' re forever deleting paragraphs:
d i p

~ ...you could abbreviate that command:

: nmap X d i p

Mastering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 damian! conway.org!

~ Likew ise, if you find you want Visual Block mode far more often than Visual
mode...steal Visual mode's tr igger :

: nma p v < C- V>

~ O r t o m ak e v i m m o r e b r o w ser - l i k e :

: nma p < Sp a c e > < Pa g e Down >

Or to make interfile navigation more convenient :

: nma p < DOWN> : n e x t < CR>

: nma p < UP> : p r e v < CR>

~ N ormal maps are also useful for larger commands

~ For example:

: nmap < s i l en t > ; y : i f ex i s t s " s y n t ax o n " ! <BAR>
s y n t a x o f f < BAR>

e l s e < BA R >

sy nt ax e n ab l e <BAR>
e n d i f < CR>

Command-line maps

~ Because they don't require any trailing characters, maps can occasionally be
handy for shortcuts on the command-line

~ For example, if you frequently write to a backup fi le:

: w - / b ac k u p / l at e st <CR>

~ You might prefer:
: cmap wb w - / b ac kup / l at e s t <CR>

~ W h i ch th en al l o w s:

: w b

Operator-pendi ng maps

~ There's a special mapping mode just for operators

~ Recall that operators are commands like c and d
~ Commands that expect a motion, or object, or pattern after them

~ As opposed to commands like R and s that take a count before!

~ After you' ve typed the operator and v i m is waiting for an operand...
~ ...it's in "operator-pending" mode

~ You can map key sequences for that special mode with an : omap

M astering Virn
Copyright ! Thoughtstream Pty Ltd, 2006

 damian@conw ay .org!

~ As you can see : nmap is the key to redesigning the v i m interface to better suit
your needs

For example, if you constantly find yourself wanting ci w but typing cw
i n st ead :

: oma p w i w

~ Or if you'd rather db mean "delete to end of block", instead of "delete to start of
cu r r en t w o r d " ;

: omap b

Other ki nds of maps

~ In addition to : i map and : nmap and : cmap and : omap, there's also:

~ : xmap, which defines mappings only for the visual modes

~ : smap, which defines mappings only for Select mode a Windows compatible
variant on the v isu al m odes!

~ : vmap, which defines mappings for all the visual modes plus Select mode
~ : map !, which defines mappings for Insert and Command-line modes
~ :map, which defines mappings for almost all modes

!
. ~ : 1map, which defines mappings for an incredibly obscure case that you' ll

almost certainly never encounter or care about

~ For more details, see:

: h e l p : ma p - mo d e s

~ : vmap is probably the most useful of these modes
~ For example, if the behaviour of <BS> / annoys you in Visual Block

mode, you can change it:
: v ma p < BS> x

M anagi ng maps

~ You can see the maps you have defined by using the appropriate map variant
without an argument:

: i map

: n ma p

~ You can see a particular mapping by naming it :

: i map < TAB>

: n ma p v

~ You can remove a mapping with the appropriate unmap variant:
: i u nmap ww

. i u nma p e e

: c u nma p wb

M aster ing Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 dami an@cour ay .org!

~ You can remove all mappings with the mapctear variants:

: i mapc l e ar

: nmap c l e ar

: v ma p c l e a r

Unremappable maps

~ When you map something, the expansion is re-expanded, if necessary
~ That can occasionally be usef ul :

: nmap X d i p

:nmap Y XO[Par agr aph del et ed her e]<ESC>:cent er <CR>

I t can ev en b e recu r siv e:

: nmap X Oi ¹ <ESC>j X

~ However, occasionally this re-expansion feature can create problems
~ For example, previously we stole Visual mode's command and gave it to Visual

B l o ck m o d e:

: nma p v < C- V>

~ What if we'd wanted to swap the two instead:

: nmap v <C- U>

: nma p < C- V > v

~ Here a v would expand to <CTRL- V>...

~ ...which would re-expand to v...

~ ...which would re-expand to <CTRL- V>...

~ ...et cet er a, et cet er a

~ Vi m detects such infinite recursions and doesn't expand the mapping at all
To support swapping commands and other situations where re-expansion is
undesirable!, vi m instead provides the norernap variants

~ For example:
: nnor emap v <C- V>

: n n o r ema p < C- V> v

~ This causes the RHS of the mapping not to be re-expanded
~ It's a good i.e. safe! default

M astermg Vrm
Copyright ! Thoughtstream Pty Ltd, 2006

 damian@conway.org!

Tip 42: Co1our your syntax

Uim has excellent support for syntax colouring

Tu rn i t on w i th :

: s y n t a x e n a b l e

T u m i t o f f w i th :

: sy n t ax o f f

Probably best to put them in your . v i mr c

Autoselects language, based on the fi le extension

Can also manually select :

: s e t s y n t a x = r u b y

Supports around 480 languages including: ADA, ANTLR, Apache config,
AWK, BASIC, bib, C, changelog, Clipper, COBOL, crontab, csh, CSS, diff, DNS,
Doxygen, DTD, Dylan, Eiffel, expect, Forth, Fortran, Foxpro, fstab, Gedcom,
gnuplot, groff, Groovy, Haskell, HTML, Icon, Java, JavaScript, lex, Lisp, M4,
mail, mailaliases, mailcap, make,~ an Maple, Matlab, MySQL, Ocaml, Occam,
Pascal, passwd, Perl, PHP, Pod, procmail, Prolog, Python, rcslog, Rexx, robots,
Ruby, Samba, SAS, Scheme, sed, SGM L, sh, SQL {numerous variants!,
sshconfig, sshdconfig, SVN, tar, Tcl, tcsh, terminfo, TeX, texinfo, valgrind,
Verilog, VHDL, Vim, VRML, xdetanlts, XHTML, xinetd, XML, xmoclmap, XS,
yacc, YA M L .

Tip 43: I 'ix bugs fast

Optimize the code-compile-debug cycle

The : make command executes your compiler on your buffer then enters
"quickfixn mode

Produces a list of errors that you can step through
Each step takes you to the location of the next error

Locations determined by parsing compiler error messages

By default, : make calls make and expects back error messages in the {very
comm on! form at :

<f i Ee>: <2 i nc>: <er r or message>

Vim comes with parsers for a range of compilers, including gcc, AWK, Jikes,
Javac, Ant, Jade, TeX, LaTeX, Pyunit, and Perl

Can write your own parsers for other compilers' error formats

Or install a translator for error messages to the default error format

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 damian@conway.org!

For example, to debug Perl scripts:
: set makepr g=! Vj.NRUNTI ME/ t ool s/ ef m~ er l .pl h - cN %N $*

~ e f m~er l . p l converts the usual Perl error messages:

<er r or message> at <f i l e> l i ne <l i ne>

~ ...to the expected format:

<f i l e> : < l i ne> : <er r or message>

Navigati ng errors

~ Once the quickfix error list is built can step through it
~ : cc <N> takes you to the Nth error

~ : cn takes you to the next error

~ : cp takes you to the previous error
~ : cn f and : cp f take you to the first error in the next file or the last error in the

previous file

Tip 44: Let v i m do the indenting for you

The simplest form of formatting support

En abl e i t w i th :

: s e t a u t o i n d e n t

Now every new line in Insert mode will start at the same column as the
previous line

For more sophisticated indenting, you can also:
: s e t s ma r t i n d e n t

Increments the indent when the previous line ends with a <

D ecrem ents the in dent w hen th e new l ine star ts w ith a !

Shunts every shell-like comment lines starting with ¹ ! to the left margin
That's annoying, so most folks switch it off with:

i nor emap ¹ X<C- H>¹

Smartmatching also increases the indent when previous line starts with any of
the words specified by the ci nwor ds option
By default those words are C-like keywords:

: set c i nwo r d s= i f , e l s e , wh i l e , do , f o r , swi t c h

M astering Vim
 opyzight ! Thoughtstream Pty Ltd, 2006

 dami an@con+r ay .org!

~ But you can change that:

: s e t c i n wo r d s = i f , e l s i f , e l s e , u n l e s s , wh i l e , u n t i l , f o r , f o r e a c h

Of course, if you actually do w ant C-like indenting...

~ ...it's best to go all the way:

: s e t c i n d e n t

~ For details of the excruciating range of options available in this mode, see:

: he l p c i nopt i on s

Tip 45: Script v i m

-:, ~ h
Fully featured: variables, expressions, variadic argument lists, control
structures, built-in functions, user-defined functions, function references, lists,
dictionaries, 1/ 0 , pattern matching, buffer and window access and control,
exceptions, OO, integrated debugger, etc., etc,

~ Far too m u ch to cov er in d et ai l

~ See :

: he l p v i m- s c r i p t - i n t r o

~ Some examples to illustrate the potential

You'd put these in your . vi mr c
f un c t i on ! Ex pu r gat eTex t t ex t !

f o r ex p l e t i v e i n g : ex p l e t i v e s l i s t

a : t ex t = sub s t i t u t e a : t ex t , ex p l e t i v e , ' [DEL ETED] ' , ' g ' !

e n d f o r

r e t u r n a : t e x t

e n d f u n c t i o n

f u n c t i o n ! Sav e B ac k u p { !

ex ec ut e ' s av e a s ' . b u f n ame ' %' ! . ' . b ac kup ' . g : b ac k up c ount .

l e t g : b a c k u p c o u n t + = 1

e n d f u n c t i o n

~ Functions can be called either as part of an expression:
: l et su c c e s s = se t l i ne ' . ' , Ex pu r gat eTex t ge t l i ne ' . ' ! !

~ Or directly via the : cal l command:
: c a l l Sav e Ba c k u p !

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 damian@conway.org!

~ You can make a function aware of the range of lines it's dealing with:
f u n c t i on ! DeAmp ! r an ge

echo ' DeAmpi ng l i nes ' . a : f i r st l i ne . ' t o ' . a : l ast l i ne

execut e a : f i r st l i ne . ' , ' . a : l ast l i ne . ' s / &/ & ; / g '

e n d f u n c t i o n

~ A n d th en :

: . , + 10c a l l DeAmp !

~ The call is applied once and the range passed as implicit arguments

Functi ons and maps

~ Earlier, we saw how to remap the <TAB> character to do completion during
i n se r t i o n s :

: i map <TAB> <C- N>

~ That's handy, but so is tabbing
~ It would be better if a <TAB> were smart enough to know when it should

complete and when it should inserts tabs
~ That's easy to achieve by changing the : i map to call a function:

f un c t i o n ! Tab Or Comp l et i on !

l et c o l = c o l ' . ' ! � 1

i f ! col ~~ get l i ne ' . ' ! [col � 1] ! - ' Nk '

r e t u r n " K< TAB> "

e l s e

r e t u r n " X< C - N> "

e n d i f

e n d f u n c t i o n

: i nor emap <si l ent > <TAB> <C- R>=TabOr Compl et i on !<CR>

~ This uses the <CTRL- R>= Insert-mode command to evaluate an expression and
in ser t th e r esu l t

~ The call to TabOr Compl et i on ! examines what's before the cursor and
returns either a literal <TAB> or a <CTRL- R> completion request accordingly

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006

 damian@conway.org!

Tip 46: Play tag

Remember the CTRL-] feature of the : hel p f i l es

That's a specific instance of a much more general facility known as tagging
Can inform v i m where certain keyw ords are defined
In the current f i le, or in other f il es

When you hit CTRL- 1, vt.m~looks u the word under the cursor in a hte named
t ags in the current directory

This file tells v i m where to jump to
Theoretically, ou could create a "tagsu file yourself but that's way too much
ef f o r t

Unix systems typically come with a utility named ct .ags which builds tag files
for collections of C source files and, in many cases, for collections of source files
for other languages

If your system doesn't provide a ct a s util i
...or your ct ags doesn't support your chosen development language s!
...you can download and build an open source, multilingual version:

ht t p : / / ct ags . sour cef or ge .net /

Can build tag files for Assembler, ASP, Awk, BETA, C, C++, C4, COBOL, Eiffel,
Erlang, Fortran, HTML, Java, JavaScript, Lisp, Lua, Make, Pascal, Perl, PHP,
PL/SQL, Python, REXX, Ruby, Scheme, Shell scripts Bourne/Korn/Z!, S-Lang,
g , ,V ' . g d g, i , d CC

To create a tag fil e:

> ct ags * . t ch!

> ct ags * . py

> ct ags * . t c1

Once you have a tag file in the current directory any vi m session will
automatically have tags enabled
In addition, you can tell vi m where else to search for tags:

: set t ags+=- / pat h/ t o/ t ag/ f i l e/ di r ect or y /
With tags enabled, once you hit CTRL-] vi m looks up the word under the
cursor in any available tag fil es
It then jumps you to the appropriate file and file
r l rr 1 g r l g d « dN

Or place the cursor over a constant and h t CTRL-]

M astering v im
Copyright 0 Thoughtstream Pty Ltd, 2006
 damian@conway.org!

Qr place the cursor over a typename and hit CTRL-]
Go~back a ~the ta stack with CTRL � T

~ If you want to look up an identifier that isn't in the text, use:
: t ag <i den t i f i ez >

~ For example:

: t ag ma i n

: t a g xNa l l o c

Tags also have completion available:
: t a g ma < TAB>

Tip 47: Have v i m do some of the coding for you

~ V i m i s ev en t - d r i v en

~ Provides hooks that allow you to execute commands automatically whenever
parti cular events occur

~ Such commands are speci fied using the aut ocmd command
~ For example, there's a hook for when a new file is created

~ Could use it to have v i m do some set-up for you...

Automati c f i le skeletons

@I"' t'I' / I! ~ Almost every . h filg has the same skeletal structure
~ Almost every . py &et needs the same basic fea ~res
~ Almost every Perl documentation specifies the same standard sections

~ So it'd be handy if vi m could set those "boilerplates" up automatically
Uk h y

au t ocmd Bu f NewFi l e * . h Or - / t emp l a t e s / s k e l e t o n . h

au t ocmd Bu f NewFi l e * . py Or - / t emp l at e s / sk e l e t o n . p y

aut ocmd Bu f NewFi l e * . pod Or - / t emp l at es / skel et on .pod

~ Or you might prefer to have your skeletons generated on-the-fly
~ So they can incorporate edit-time information!

For example:

aut ocmd Buf NewFi l e * . p [l m] Or ! f i l e t emp l at e <af i l e>

aut ocmd Buf NewFi l e * .p [l m] 1/ " [Nt] * [¹] . * i mpl ement at i on [
' t t] K+h er e /

M astermg Vrm
Copyright ! Thoughtstream Pty Ltd, 2006

 damian@conway.org!

Patchi ng f i les i n vi m

Vi m has excellent support for applying patches
~ ...and examining the effects
~ If you have the unpatched file in a buffer, you can simply type:

: ver t d i f f pat ch <p a t ch f i l e>

This copies your buffer...
~ ...opens a new window beside it with the same contents...
~ ...patches the contents of the new window with the patch file

...and turns on difference highlighting

Tip 48: Script vi m in Perl/Python/Ruby/etc.
~ You can script vi m in languages other than vimmish

For example, you could write a simple command that makes a bullet list from a
co m m a'd l i st :

:map ; b : per l
 $1i ne ! = $cur wi n- >Cur sor ;

$cur buf - >Append $1i ne , map " Nt *
map / " Xs* . * ?! Ns* $/ ? $1 : $ l

sp l i t / , Xs* / ,

$c u r bu f - >Get $l i ne ! ! ;

$c u r bu f - >De l e t e $1i ne ! <CR><CR>

~ There's an API providing access to all windows, buffers, text, options, etc. from
w i th in Per l

~ For a complete list of the available functions, see:
: hel p : per l - us i ng

~ If you prefer to script in Python, that's just as easy:
: py t hon « END PYTHON

f r o m v i m i mp o r t *

f r om st r i n g i mp o r t uppe r

cur r ent . l i ne = upper cur r ent . l i ne !

EN D P Y T HON

~ Vi m also has internal interfaces to MzScheme, Tcl, and Ruby

Mastering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 damianCNconway.org!

~ For m ore detail s:

: hel p <2.anguage name>

Tip 49: RTI'M

Tip 5Q: use a e r

Can use v i m as a replacement for mor e or r ess

Invoke v i m via the shel l script :

$VI MRUNTI NE/ macr os/ l ess . sh
~ H hli hts

I

~ For example: sto ~i Mv" 4
> $VIMRUNTIME/macr os/ l ess. sh -/ Tal. ks/Vi m/ demo/Mai n. cc

C o n cl u si on

~ We' ve covered maybe one tenth of the full power of vi m
~ And there many more configuration options, usage variations, extra tricks, et

cetera, for the features we have covered
~ Other major features include: virtual editing, digraphs, folds, windows, tabbed

editing, binary files, text highlighting, active matching, visual quickfix mode,
sessions, views, autoformatting of text and comments, spell checking, the
"global" command, encryption, mode lines, persistent editing, recording
command sequences, prmtmg.

~ : hel p is your friend
~ :hel p <'t opi c><TAB> doubly so
~ You don't have to take immediate advantage of everything we' ve talked about

h er e
~ But there are probably several of these features that would dramatically

improve your productivity
M astering Vim

Copyright ! Thoughtstream Pty Ltd, 2006
{damian@conw ay .org!

~ Often when you' re editing code you need to check the manual
~ Vi m makes that easy with the K command
~ In Normal mode, typing K does a man on the word under the cursor
~ You can change the manual program that's invoked by setting the keywordprg

option:
: set keywor dpr g=per l doc

Learn more of the navigational commands

Try the visual modes when they' re more appropriate
~ Set the options to help you work the way you like to work
~ Create abbreviations and/ or maps to short-cut your common tasks

~ gee if syntax colouring, f~olds, ta s, and quickfixing can facilitate your coding
~ There are entire new dimensions of power and convenience hidden behind that

f am i l i ar v i i n t er f ace

Explore them!

Appendix A : v i m's pattern syntax

~ Vi m uses an extended version of regular expressions

~ N o t th e sam e as v i 's

~ Not the same as Perl 's but of comparable power!

~ The basic rule is that almost every character matches itself
~ With a few exceptions, only backslash-escaped characters are special
~ T h e m ai n f eat u r es ar e :

Ma t c h e s . . .Su b p a t t e r n . . .

. . . any char act er except newl i ne

* . . . zer o o r mor e o f t he pr ec e d i n g

. . . s t a r t o f l i n e o n l y a t s t a r t o f p a t !

. . . e nd o f l i ne on l y at end o f p at !

. . . a n e x p l i c i t c h a r a c t e r c l a s s - A D !

%<numer ou s c h ar ac t er s> . . . sp ec i a l be h av i ou r

. . . a l i t e r a l b a c k s l a s h

<any ot her char act er > . . . i t se l f

~ Special behaviours fall into categories as follows...

M astering Vim
Copyright Cl Thoughtstream Pty Ltd, 2QQ6
 damian@conway.org!

~ The fol lowing backslashed characters are short-hands for one or more "difficult"
ch ar acter s:

Escape Mat ches .

l i t e r a l

l i t e r a l

any char act er , i ncl udi ng newl i ne
N$

Na al phabet i c char act er : [A- Za- z]

non- al phabet i c char act er : ["A- Za- z]KA

Kb < B S >

d 3.g l .t :

no n - d i g i t :

Kd [o - 9]

[" 0 - 9]

X e < E S C>

any char act er t hat mi ght appear i n a f i l ename
l i ke " Nf " , but exc l udi ng d i gi t s

head of wor d char ac t er : [A- Za- z]

non- head of wor d char ac t er : ["A- Za- z]

i d e n t i f i e r c h a r a c t e r

l i ke " Ni " , but excl udi ng di gi t s

k ey wor d c har ac t er

l i ke " Xk " , but exc l ud i ng di gi t s

KF

Xh

Xk

l o w e r c a s e c h a r a c t e r : [a - z]

non- l ower case char act er : [" a- z]

e n d - o f - l i n e

oc t a l d i g i t :

no n - oc t a l d i g i t :

Xn

[0- 7]

[" 0- 7]
No

Xo

pr i nt ab l e char act er

l i ke " Np" , but exc l udi ng di gi t s

< CR >

whi t espace char act er : <SPACE> and <TAB>
whi t espace char act er : <SPACE>, <TAB>, and newl i ne
non-whi t espace char act er ; opposi t e of Ns

Np

X s

s

K s

< T A B >

upper case char act er :Xu [A - z]

M astering Vim
Copyright Oc Thoughtstream Pty Ltd, 2006

 damian@conway.org!

Charact ers and charact er classes

e p

n ~ ~g

n o n - u p p e r c a s e c h a r a c t e r

w o r d c h a r a c t e r :

n o n - w o r d c h a r a c t e r :

hex d i g i t :

no n - hex d i g i t :

f " A- Z]

[0- 9A- Za- z]

[" 0- 9A- Za- z]

[0- 9A- Fa- f]

[" 0- 9A- Fa- f]

Nx

N%o <n> sp ec i f i ed oc t a l c h ar ac t er

K%d <n> sp ec i f i ed dec i ma l c h ar ac t er

N%x <n> sp ec i f i ed hex c h ar ac t e r

1%u r n> sp ec i f i ed mu l t i by t e c h ar ac t er

N%U<n> spec i f i ed l ar ge mu l t i by t e char act er

Repeti ti ons

~ Zero-or-more: append *

append %+

~ Zero-or-one: append N?

append N M!

~ M-to-N: append % H, N}

~ M-or-more: append K H, }

~ zero-to-N: append N , N}

~ For "as few as possible" make fi rst number negative:

~ For example, to match a double-quoted string at least one character long:
/ " . X - 1 , } "

~ As a special case of that, K - } minimally matches zero-or-more
~ For example, to match everything up to the fi rst occurrence of " END

/ N . N - j END

~ O n e- o r -m o r e

~ Exactly-M

A lternati ves, synternati ves, and sequences

Alternatives are specified with N ~
~ For example:

/ per l k ~pyt honh ~php
"S t t i " ar e al tern at i v es w h er e both si d es h av e to m atch

M astering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 damian. conway.org!

~ Specified with a 4a
~ The "and" equivalent of N ~ 's "or"

~ For example, to find a line containing the word "Java" and the word "line":

/ . * J a v a ' t & . * l i n e

Sequences are successive characters that ma be truncated at an ~ t
Speci f ied with N s [. . .]

Uery handy when searching for terms that might be abbreviated
For example:

/ f u n N%[c t i o n]

~ ...is th e sam e as:

/ f un% f unc'tt f unct % f unct i on ! f unct i o'tt f unct i on

Context specif i ers

~ The " and 9 markers allow you to constrain where a match can occur
~ There are many other such constraint specifiers

For example, K " and N $, which are the same as " and 9, except they can
appear anywhere in a pattern

~ Handy in alternations and synternations!
~ A l so K 5 " an d N% $: star t an d en d of f i l e

~ Other positional constraints include:

...match only at current cursor position: N 4¹
~ ...match only at line N: N%Ãl

~ ...match only at column ¹ NRNc

~ ...match only at virtual column ¹ Ntl Nv allowing for tabs!
~ Can also put a < or > after the % to indicate "before" or "after" the specified

row / column

~ The N < and N> subpatterns only match at the start / end of a word
~ For example:

/ i < f o r k >

...m atches "for ", bu t not "for tu ne" nor nw herefor " nor "en for ce"

M a t ch b o u n d a r i es

~ Sometimes you want to use a pattern in a substi tution
~ You need to match a certain line, but only change part of it

f Cdr
~ To make that easy, v i m provides the N z s and N z e specifiers

They alway you to mark where the pattern should be considered to have
m at ch e d

Mastering Vim
Copyright ! Thoughtstream Pty Ltd, 2006

 damian@conmay.org!

Suppose you want to find every call to the function 'update' provided its first
argument starts with a digit! and change that call to a call to 'update num'

~ You could do that w i th :

: %s/ Ns*Kzsupdat eNzePKd/ updat e num/ g

~ The N z s and N ze tell the substitution that, if it successfully matches the entire
pattern ...

~ ...it should pretend that it only matched from just after the N z s to just before
th e Nz e

~ ...so that the substitution only replaces the "update"

Mastering Vim
Copyright ! Thoughtstream Pty Ltd, 2006
 damian@convvay.org!

