Mastering Vim

Damian Conway

Copyright © Thoughtstream Pty Ltd, 2006. All Rights Reserved.

Summary

Tip 1: Get vim

Tip 2: Seek help

Tip 3: Understand the metaphors
Modes

Buffers

Commands

Tip 4: Learn your alphabet

Tip 5: Quit smarter

Tip 6: Learn to move

Word motions

Line and paragraph motions
Miscellaneous motions

Matching delimiters

Repeated motions

Scrolling a large buffer

Tip 7: Keep track of where you are
Tip 8: Keep track of where you were
Editing with marks

Tip 9: Use vim's own navigation marks

Tip 10: Learn how to change text efficiently

Tip 11: Repeat yourself numerically
Tip 12: Fix your deletions

Tif) 13: Control your insertions

Tip 14: Search smarter

Searching within a line

Searching for existing word

Case (in)sensitivity

Tip 15: Use searches as motions
Tip 16: Preview your search results
Tip 17: Highlight your search results
Tip 18: Search and destroy

Multiple substitutions

Cautious substitution

Substitute again

Tip 19: Copy shamelessly

Copying text objects

Copying delimited objecfs

Internal copies
Cutting text
Pasting text
Indented pasting

W W 00 0 0 NN NN NN oy gl o B W A

10
10
11
11
12
12
13
13
13
14
14
14
16
16
16
16
17
17

Error! Bookmark not defined.

17
18
18

Targeted copy-and-paste

Targeted cut-and-paste

Tip 20: Store text in registers

Tip 21: Travel through time
Branched undo

Tip 22: Read and write files efficiently
Reading buffers

Tip 23: Use a filter

Tip 24: Sort internally

Tip 25: Remember your history
Tip 26: Autocomplete your text
Filename completion

Navigating a completion

Smarter completion

Selective completion

Other forms of completion

Tip 27: Complete your text too
Filenamelfilepath completion

Defined symbol completion

Identifier completion

Other completions

Tip 28: Vim is a file browser

Tip 29: Explore vim's many options
Tip 30: Show your line numbers
Tip 31: Constrain your line widths
Tip 32: Write before you leave

Tip 33: Configure your .vimrc file
Tip 34: Set your options by browsing
Tip 35: Defang those tabs

Sticking with eight-column tabs
Adjusting tabs

Replacing tabs as you type

Tip 36: Indent cleverly

Smarter indenting

Total tabular control

Tip 37: Recover after a disaster
Recovering after a crash

Preventing mishaps

Improving your chances

Tip 38: Make a backup

Tip 39: Edit visually

18
18
19
19
20
20
21

N

23
23
23
24
24
24
24
25
25
25
26
26
27
27
28
28
28
29
29
29
30
30
31
31
32
32
32
33
34

Visual mode

Visual-Line mode

Visual-Block mode
Terminating block mode
Visually selecting text objects
Tip 40: Abbreviate your typing
Restrictions on the LHS
Expanding abbreviations
Reviewing your abbreviations
Targeted abbreviations
Computed abbreviations

Tip 41: Map your commands
Insertion maps

Normal maps

Command-line maps
Operator-pending maps

Other kinds of maps

Managing maps

Unremappable maps

35
35
35
36
36
36
37
37
37
38
38
39
39

5 &5 8

41
41

Tip 42: Colour your syntax

Tip 43: Fix bugs fast

Navigating errors

Tip 44: Let vim do the indenting for you

Tip 45: Script vim

Functions and maps

Tip 46: Play tag

Tip 47: Have vim do some of the coding for you
Automatic file skeletons

Patching files in vim

Tip 48: Script vim in Perl/Python/Ruby/etc.
Tip 49: RTFM

Tip 50: use vim as a pager

Conclusion

Appendix A: vim's pattern syntax

Characters and character classes

Repetitions

Alternatives, synternatives, and sequences
Context specifiers

Match boundaries

43

A

R

46
47
48
48
49
49
50
50
50
51
52
53
53
54
54

Mastering Vim

Copyright © Thoughtstream Pty Ltd, 2006

(damian@conway.org)

Tip 1: Get vim

* If you're still using vanilla vi it's time to upgrade to vim

Download it from: http://www.vim.org/download.php

* Binary distributions available for "troublesome” platforms

Tip 2: Seek help

Type:
thelp
Or for a specific topic:
thelp <topic><CR>
Or for a list of topics containing a given string;:
thelp <string><TAB>
Or for any topic matching a given (vim-ish) pattern:
thelpgrep <pattern>
Then :cnext<CR> to step through matches
Within help files, anything in vertical bars is a hyperlink
When the cursor is within bars, hit CTRL~-] to jump to that topic
At any time, hit CTRL-T to back out of the sequence of links

Tip 3: Understand the metaphors

vi-like editors all work on the same basic set of principles

Understanding them helps make sense of the enormous complexity of the vim
interface

Modes

Almost all versions of vi are modal
Usually in one of two basic modes...

Normal mode, where you can move around and make large large-scale changes
to the text

Insert mode, where you can type in literal text

Mastering Vim

Copyright ©]houghtstre.am Pty Ltd, 2006
(danuan@conway.org)

Other modes include:
Command-line, where you're typing an extended command after a colon
Visual and Visual-Block, where you're selecting text prior to manipulating it
Replace, where you're typing literal text over the top of existing text
Experienced vi users instinctively know what mode they're in
For novices, it's handy to set the : showmode option:

:set showmode<CR>

If you become "modally confused" just hit <ESC> to go back to Normal mode

Buffers

Vim stores each text you edit in a buffer

Typically each buffer is associated with a file and filename
But that's not necessary: you can use nameless buffers too

Changes to the text are updated in the buffer immediately

But changes are only propagated back to the file when you :write the buffer
(more on that later)

If vimis terminated unexpectedly, you can generally recover the buffers you
were working on (more on that later too)

Commands

Vim is command-driven

Typically from Normal mode

Though there are commands in other modes too

Three basic types of commands:

Normal-mode commands (take a count before)

Normal-mode operators (take a count before and an argument after)

Command-line mode commands (introduced by a colon, take a range before
and arguments after)

Tip 4: Learn your alphabet

Vim's normal-mode commands are the most frequently used
Most users use only a small subset
As an exercise, go through the keyboard...

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 5
(damian@conway.org)

* Almost every key (and shifted key, and control key) does something in vim
* How many do you know?
* How many do you use regularly?

* Increase your repertoire

Tip 5: Quit smarter

* The usual way people quit (from Normal mode) is:

No write since last change (add ! to override)

e There's an abbreviation:
wWg

» There's an abbreviated abbreviation:
X

* Or directly from Normal mode:
47

Tip 6: Learn to move

* Most vim users know the basic cursor motions of Normal mode:
k
h 1
3
* There are also higher-level motion commands and operators

e For words, lines, and other "text objects”

Word motions

» To move forward to the start of the next word: w

e To move backwards to the start of the previous word: b

* To move forward to the end of the next word: e

e To move backwards to the end of the previous word: ge

* "Words" are considered anything that is delimited by non-identifier characters

Mastering Vim

Copyright © Thoughtstream Pty Ltd, 2006
(damian@conway.org)

All the motions have uppercase versions that use whitespace as the word
delimiter instead

Line and paragraph motions

To move to the start of the current line: 0 (zero character)
To move to the start of the first word of the current line: *
To move to the end of the current line: $

To move to the start of the next line: <CR>

To move to the start of the previous line: - (minus sign)
To move to the start of the current paragraph: {

To move to the end of the current paragraph: }

A paragraph is delimited by empty lines (not blank lines)

Miscellaneous motions

To move to the top of the buffer: gg
To move to the end of the buffer: G
To move to line n: nG or ngg
To move to the point p percent through the buffer: p%
Tip: if you:
:set showcmd

...you are shown the partial commands as you type them

Matching delimiters

To move the matching bracket of a {...}, (...), or [...] pair: %
By default, vim only matches {...}, (...), and [...]
But you can extend that to whatever pairs you like:
set matchpairs+=<:>,«:»
Even to "pairs” that aren't normally considered pairs:

set matchpairs+==:;

Repeated motions

Tedious to have to type 11111 to move five chars left
Instead can type: 51

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006
(damian@conway.org)

Likewise, up three lines: 3k
Likewise, ahead four paragraphs: 4}

Scrolling a large buffer

To scroll Forward one window's worth of text: <CTRL-F>
To scroll Down a half window's worth of text: <CTRL-D>
To scroll Up one half window's worth of text: <CTRL-U>
To scroll Back a full window's worth of text: <CTRL-B>

Tip 7: Keep track of where you are

Type <CTRL-G> to be told where you are

Type g<CTRL-G> to be told more precisely where you are

Better still, enable the ruler: :
:set ruler

Shows: <line>,<column> <percentage>

But the information the ruler shows is highly configurable

See:

thelp rulerformat

:help statusline

Tip 8: Keep track of where you were

In Normal mode, you can leave a mark at any cursor position
Just type m<char>
For example:
mh
Then to go back to that mark, you type a backtick: ~ <same char>
That is:
“h
Or, to go to the start of the line containing the mark, type a single quote:
'<same char>
'h
If you use a lowercase letter, the mark is per-buffer

8

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006
(damian@conway.org)

If you use an uppercase letter, the mark is global
For example:
moQ
:edit some_other_file<CR>
Q
The ~ 0 would immediately switch your buffer to the file in which the mark was
set, then jump to the mark

You can see all the marks you've set by typing: :marks

Editing with marks

One of the most important uses of marks

As a "motion" for other editing commands

For any command that takes a motion after it...
..(suchasc,d, y, >, etc)...

...you can use a jump-to-mark motion as well

For example, to delete several hundred lines of code...
...move to the start of the code...

...set a "start” mark: ms

..move to the end of the code...

...delete back to the "start”" mark: d” s

Tip 9: Use vim's own navigation marks

Vim sets certain non-alphabetic marks automatically as you work
The most valuable is double backtick, the context mark: =~

~~ takes you to the last place you jumped from
(where "jumped” means searched, used G, or returned to a mark)

A handy trick when working on two regions of a file...

...set the context mark at the first region: m”

...jump to the second region...

...then ~~ between the two regions

Another handy "Where was I?" mark is backtick-doublequote: ™"
This is where you were last time you exited the current file

A useful shell alias:

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 9

(damian@conway.org)

L

> alias v \lvim +normal\\\"\\\"
Vim also keeps a list of all your jumps within a file
You can use <CTRL-0> and <CTRL-TI> to step back and forth through the list

Tip 10: Learn how to change text efficiently

You can get into Insert mode via:

i : Start inserting before the current cursor position

I :Start inserting before the start of the current line

a : Start inserting after the current cursor position

A : Start inserting after the the end of the current line

o : Start inserting on a new line below the current line

0 : Start inserting on a new line above the current line

s : Delete the current character and start inserting from there
Ns : Delete the next N characters and start inserting

You can get into Replace mode via:

r : Replace the character under the cursor then return to Normal mode
R : Replace characters from the current cursor

c<motion>: Replace from the current cursor position to where the motion
reaches

C : Replace the current line

Tip 11: Repeat yourself numerically

If you prefix any of the preceding commands with a number, it is repeated that
many times
For example:
30a_-<ESC>
...produces:

Likewise:
50Please!<ESC>
-..produces:

Mastering Vim

1 O Copyright © Thoughtstream Pty Ltd, 2006

(damian@conway.org)

Please!
Please!
Please!
Please!
Please!

You can also repeat the most recent editing command quickly with:

= For example, the earlier begging could also be achieved with:
oPlease!<ESC>

Has the advantage that you can simply stop when you have enough...

...rather than having to guesstimate how many beforehand....

Tip 12: Fix your deletions
» Typing a backspace/ delete in either editing mode deletes the character
preceding the cursor

* Normally you can only backspace back to the point where you started
inserting/ replacing

* However, vimlets you set an option that extends the reach of deletion

* For example:

:set backspace=start " Can delete back past start of edit
:set backspace=indent " Can delete back past autoindenting
:set backspace=eol " Can delete back to previous line

» Typically you want all three:

:set backspace=indent,eol,start

Tip 13: Control your insertions

» In either editing mode most characters you type insert that character...but not all
» Many of the control characters have special insertion behaviours

* CTRL-Y duplicates the character in the same column on the preceding line

* CTRL-E duplicates the character in the same column on the following line

» CTRL-A inserts again whatever the most-recent inserted text was

» CTRI-R inserts the contents of a register (more later)

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006
(damian@conway.org)

CTRL-R= evaluates an expression and inserts the result ,
CTRL~T inserts a tab at the start of the line (without moving the insertion point)

CTRL-V inserts the next character verbatim (even if it's normally a control
character)

CTRL-W deletes the word preceding the cursor
CTRL-O takes you back to Normal mode for one command

Handy, for example, to clean the rest of the line: “0OD

Tip 14: Search smarter

To search for instances of a regex within a buffer:
/ <pattern><CR>
Takes you to the next piece of text after the cursor that matches the pattern
To go the second match, either
/<CR>
Or (more commonly):
n
To search backwards:
?<pattern><CR>
And backwards again:
N

Can configure vim to wrap the search around from the end of the buffer back to
the start:

:set wrapscan
Regexes used are sed-ish, but vim extends them considerably
Comparable in power to Perl, but numerous differences in syntax

Appendix A summarizes the syntax

Searching within a line

Often you just want to jump to a particular character within the current line
There's a short-cut for that: £f<char> (for "find")
For example:

fu

You can jump backwards too: F<char>

Mastering Vim

1 2 Copyright © Thoughtstream Pty Ltd, 2006

{damian@conway.org)

» If you put a count before the £ you're jumped to the Nth instance:
Sfu

Searching for existing word

» If you have the word you want to search for already under your cursor...
* ..just type * to find the next instance
* ..or #to find the previous

Case (in)sensitivity

¢ Normally vim searches are case-sensitive

* If you would prefer case-insensitive set the following option:
:set ighorecase

* Better still, if you'd like "partial sensitivity", set this option as well:
:set smartcase

e "Smartcase" overrides the "ignorecase" behaviour whenever your pattern
includes any uppercase letters

* Even with these options set you can still be specific when you want
* Use the \c specifier within the pattern

» Everything after it within the pattern will be match case-insensitively, no
matter what

e Likewise, there's \C to unconditionally turn case sensitivity on

Tip 15: Use searches as motions

* Because every successful search results in a movement of the cursor...
» ..every search command can be used as the <motion> for any other operator

* For example, to yank every line up tothe _ END__line of a file:

y/__END__<CR>
« Or to delete everything within a line, from the cursor up to and including the
semicolon; type this:

df;

» Often, of course, you'd rather delete everything up to but excluding the
semicolon (or whatever)

e So vim also has the t<char> (or "to") command
* By itself, jumps to the character before the specified character

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006
(damian@conway.org)

As a motion, specifies "up to but excluding™

dt;

o

Tip 16: Preview your search results

vim has an option that causes it to show you where your search will match:

:set incsearch
Looks ahead as you type the search pattern, and highlights first match
Only jumps to that position when you hit <ENTER>
If you're looking ahead and hit <ESC> instead...
...cancels the search and returns cursor to former position

Very handy to "peek-and-return”

Tip 17: Highlight your search results

Often the match you find isn't the one you want
So it can be handy to be shown where else in the buffer you should look
Search hﬁhﬂg_k_tlng makes that easy:
:set hlsearch
Now every match of every search will be highlighted
Search still jumps to the first match

But now you can see where else you might need to look

However, the highlighting persists until your next search
Annoying

To get rid of it, type:

:nohlsearch

Tip 18: Search and destroy

You can also tell vim to find a match and replace it:
:s/<pattern>/<replacement>
With find the next match and replace that one instance

You can specify a range of lines to restrict the search to:

:10,33s/<pattern>/<replacement>

Mastering Vim

1 4 Copyright © Thoughtstream Pty Ltd, 2006

{damian@conway.org)

s+ Will then replace first instance per line in that range

» If the range consists of a single number, only that line is modified

* For example, only change the first line:
:1s/<pattern>/<replacement>

* It you include a sign, then the range will be relative to the current line:
:-10,+33s/<pattern>/<replacement>

* That means: "from 10 lines above the cursor to 33 lines below it"

* If you use a semi-colon instead of a comma:
:~10;+33s/<pattern>/<replacement>

« ..then the end of the range is relative to the start of the range, instead of relative
to the current line

e S0 the semicoloned version means: "from 10 lines above the cursor for the
following 33 lines"

* Inarange, . means the current line, $ means the last line
» For example, to substitute on each line in the rest of the file:
:.,$s/<pattern>/<replacement>

 There's also a short-cut for making the range "the next N lines”

¢ If you enter a number before the colon:

99:
/

* Youget:

:t.,+98
* You can specify the entire file as the range:

:1,$s/<pattern>/<replacement>
* And there's a short-cut:
:%s/<pattern>/<replacement>

* You can also specify a range of lines according to their contents

e

e Use /<pat>/ to specify "the next line that matches <i)at>"

» Use 2<pat>? to specify "the previous line that matches <pat>"

» For example, to substitute only within the body of an HTML file:
16
: /<body>/, /<\/body>/s/<I>//

e You can add an offset after either range specifier

 For example, to match from the line after the previous instance of "foo"...
...to ten lines before the end of the file:

:?foo?+1,$-10s/<pattern>/<replacement>

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 1 5
(damian@conway.org)

* Note that many other "colon” commands take ranges

* The specification syntax is always the same

Multiple substitutions

A substitution only substitutes one match per line

Even if you use the % range, you get one substitution on every line

To specify a substitution of every match on a line...

..append the /g modifier:
:s/<pattern>/<replacement>/g
:10,33s/<pattern>/<replacement>/g

:%s/<pattern>/<replacement>/g

Cautious substitution

* To request a confirmation on each replacement append a flag: /c

:¥s/cat/feline/c

Substitute again

* Often you want to repeat the last substitution on another line

* You can do that with just:
:s<CR>
* Or use the Normal-mode shortcut:
&
* You can repeat the substitution globally with:
t%s
* Orm
g&
« Handy to "get it right" on one line, then apply everywhere

Tip 19: Copy shamelessly

* To copy some text, you "yank" it, with the y operator
e Tocopyaline:yyory
* Tocopy aword: yw

To copy a paragraph: y}

[]
Mastering Vim
1 6 Copyright © Thoughtstream Pty Ltd, 2006

(damian@conway.org)

Pasting text

« Once you've copied or cut some text, it can be pasted elsewhere using p

For example, to move a paragraph containing the word "rabbit" to the end of
the buffer:

/rabbit<CR>
dap
G

P
* p always pastes after the cursor

...like an a if you copied / cut less than a full line

..like an o if you copied/ cut a full line or more

* You can also paste before the cursor: with P

T et

Indented pasting

» To paste lines above or below the current line...
o ..but with the same level of indenting:

Ip
1P

Targeted copy-and-paste

 If can move a chunk of text to a specific location in one command:
: <range>copy <target>

* The <target> uses the same specification syntax as ranges

» For example, to copy the current line to the end of the file
:copy $

+ For example, to copy the current paragraph to after the first"__END__" marker:
22762,/ "$/copy /__END__/

Targeted cut-and-paste

» Instead of copying text to a target, you can move it:
:<range>move <target>
« For example, to move the next 10 lines to the start of the file:

:+1,+10move 0

Mastering Vim

1 8 Copyright © Thoughtstream Pty Ltd, 2006

(damian@conway.org)

Tip 20: Store text in registers

» Every y or d command stores the copied text in a special location
* Known as a register
* The default register is nameless

* Other registers are named with lowercase letters: "a "b "c etc.

* To yank text into a named register, specify the register name before the yank
command:

"

ayw
o Likewise to delete, but save the deleted text in a named register:
"zd$
* To paste the contents of a register, name the register before the paste command:
ap
* InInsert mode, to "type" the contents of register "n

<CTRL-R>n
 InInsert mode, to "insert" the contents of register "n
<CTRL-R><CTRL-R>n
* Registers are useful for keeping snippets that you need to use over and over

e

e
* If you name the register using an uppercase letter, it's the same as the lowercase
version...

« ..except that the yanked /deleted text is appended to the register instead of
overwriting it
e Useful for trawling a document and picking out the bits you want

Tip 21: Travel through time

e Vim has the ability to undo arbitrarily many changes to a buffer
 And to redo them if you decide they were okay after all

» To undo the last buffer change: u

e Note that, unlike vi, vim's undo doesn't undo a preceding undo
s To redo the last undone change(s): <CTRL-R>

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 1 9
{damian@conway.org)

Branched undo

Prior to version 7, if you undid some changes then made a new change...
...vim threw away all the undone changes

Since version 7, instead of discarding this "alternate history"...

...vim branches out into a new history

...but remembers the old one

The u and <CTRL-R> commands run you back-and-forth within the most
recent historical branch

But every change in every branch is timestamped
So you can go back/forward to any particular point in your editing history
Move back in time (through different branches) with: g~
Move forward (through different branches) with: g+
Move back/forward to a particular time with:
tearlier <time offset>
:later <time offset>
For example, to return to the state the buffer was in 10 minutes ago:
earlier 10m
Then to move forward again to the state 30 seconds after that time:

:later 30s

Tip 22: Read and write files efficiently

To edit a file from within vim:

tedit <filename>

': next <filename> i 5ot
The difference is that :next autowrites if the autowrité option is set

To edit the next/ previous file listed on the command hne

tnext
:prev

To edit the file you just left:
:next #

To edit the file whose name/path your cursor is over:

gf

20

Reading buffers

* To read the contents of another file into the buffer, inserting them below the
current line:
e
:read <other filename>
* To read in the output of another process, inserting it below the current line:
sread !<process>
* For example:
:read !GET http://www.mycorp.com/std_disclaimer.html
* If you specify a line-number before read, the new text is inserted after that line
 The commonest use is to insert something at the very start or end of a buffer:
:0read std_header
:Gread std_footer

Tip 23: Use a filter

 Can also write buffer to a process then read back in from that process

" Sort entire buffer (range is %)...

*» Can specify other ranges of lines:

”

Sort current line and next 20 lines...
t.,.+20!so0rt

* Or filter a single line:
!lwc
¢ Or for a motion:

" Sort from here to EOF...
IGsort

" Sort surrounding paragraph...
lipsort

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 2 1
(damian@conway.org)

Tip 24: Sort internally

- But what if your system doesn't provide a sort utility?

vim has its own built-in sorting mechanism:
:sort

And reverse sort:
:sort!

Many convenient options:

:sort n Sort numerically (by first number in line)
:sort x Sort numerically (by first hexadecimal number)
tsort o Sort numerically (by first octal number)

ssort i Sort case-insensitively

tsort u Remove duplicate lines after sorting

:sort /pattern/ sort after skipping text matched by pattern

:sort r /pattern/ Sort using text matched by pattern
The options can be combined:

:sort iur /~.\{6}/ Sort case-insensitive, unique, on 1lst 6 chars

Tip 25: Remember your history

Whenever you execute a "colon" command or a search, vim remembers it
Next time you type a colon or a slash, you can trawl through that history
Just hit the <UP> or <DOWN> key

When you find the one you want, just hit return

If you specify part of the pattern or command, the arrows only show
patterns/ commands with the same prefix

Alternatively, you can edit the history to create a new command or search
Instead of :, type q: to initiate the command

Instead of /, type g/ to initiate the search

Navigate to the command/ pattern you want

Modify it using the usual text-editing commands

When you hit <RETURN> the modified line will be executed

Mastering Vim

22 Copyright © Thoughtstream Pty Ltd, 2006

(damian@conway.org)

Tip 26: Autocomplete your text

* Once of the most useful features of modern shells

* No longer have to type in full filenames

* Just the first few letters...

o ..then hit <TAB>

» Typically shown the list of possibilities

« If you're lucky, subsequent <TAB>s cycle each in turn
o Likewise for command names at the start of the line

Filename completion

* Cando the same in vim...

+ ..when entering a command that expects a filename

* :editor :write, for example

Type the first few letters and hit <TAB> to cycle the possibilities
 Alternatively, type <CTRL-A> to insert all possibilities

Navigating a completion

 Once completion is active, <TAB> cycles to the next possibility
* So does <CTRL-N>
» To go back to a previous possibility: <CTRL-P>

Smarter completion

* You can configure vim to be even more helpful
» Depending on how you prefer your completions
* Using the wildmode command:

set wildmode=list

—

» Now completions just list the possibilities (but never fill them in)
* O ’

set wildmode=list:longest
« Now completions list the possibilities and fill in the longest common prefix
* Orn

set wildmode=list:longest,full

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 23
(damian@conway.org)

+ Now completions list the possibilities and fill in the longest common prefix
« And subsequent <TAB>'s at the same place cycle the full possibilities

» See :help wildmode for the numerous other possibilities

* You can also change the character that initiates completion:

:set wildchar=<ESC>
Selective completion

* You probably never want to complete to a .o or .obj file
* So you can tell vim that:

set wildignore+=*.0

set wildignore+=*.0bj

set wildignore+=core

Other forms of completion

 Completion is so useful that vim supports it just about everywhere
» When typing a "colon" command, <TAB> completes valid ex commands

 When typing in a shell command (after a : !), <TAB> completes valid shell
commands

e After a :set, <TAB> completes all valid vim option names

« Likewise after a :map, <TAB> completes existing macro names

Tip 27: Complete your text too

 Once you're hooked on completion, man, you need it everywhere

* Including in the text you're editing

* So vim provides the <CTRL-X> mode

« While in Insert or Replace mode, type <CTRL-X> after a partial "word"

« Then select the type of completion you want by typing a second control key...

Filename/filepath completion

« <CTRL-X><CTRL-F> completes filenames and filepaths

Mastering Vim

2 4: Copyright © Thoughtstream Pty Ltd, 2006

{damian@conway.org)

Defined symbol completion

* <CTRL-X><CTRL-D> completes predefined C preprocessor symbols
#define def FUNC CALL f(o*o0)
result = my de<CTRL-X><CTRL-D>

* (an also change what it thinks a definition is

* Setthe define option to a pattern

* For example, to complete defined Perl subroutines:

:set define="\\s*sub
¢ Then:

sub defenestrate exception {...}
Sresult = de<CTRL-X><CTRL-D>

Identifier completion

* <CTRL-X><CTRL-N> completes identifiers from the current file
* Identifiers are sequences of "keyword" characters
* The default keyword characters are: '@,'0'-'9",'_','a'-'z',/A'-'Z’
* Can change this default by setting the iskeyword option
* For example, to handle C identifiers:
:set iskeyword=a-z,A-Z7,48-57, ,.,-,>

* Can also supply a list of "standard" identifiers that should always be considered
for completion

* Put the list in a separate file
* Then tell the completion mechanism to use it as well:
set complete+=k~/data/my_std_identifiers
* Theleading 'k ' indicates that the file is laid-out like dictionary file
* That is, one word per line
* (Can also search for identifiers from #include files
* Use <CTRL-X><CTRL-I>

Other completions

* <CTRL-X><CTRL~-L> completes existing lines
* <CTRL-X><CTRL-K> completes identifiers from a dictionary file _

* <CTRL-X><CTRL-T> completes related identifiers from a thesaurus file

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 25

(damian@conway.org)

* Sce:

:help ins-completion

Tip 28: Vim is a file browser

e Vim comes with a standard plug-in that helps navigate directory structures
« If you edit a directory, vim acts like a simple file browser

» Hit <ENTER> to descend to a particular file or subdirectory

» Hit - to ascend to the parent directory

» Hit D to delete a file

¢ Hit R to rename a file

» Hit s to switch between sorting by name, time, and size

 Hit r to reverse the sorting order

« Hit i to change how much information you're shown (and how compactly)
e Hit p to preview a file in a separate window

e Hit c to change the current directory to the directory under the cursor

e Hit d to create a new directory

e Hit o to open the selected dir/file in a horizontally split window

* Hit v to open the selected dir/file in a vertically split window

OTip 29: Explore vim's many options

e Most of vim's interface and behaviour is configurable
» Mostly by setting specific configuration options
e Can set them ad hoc during an editing session
» Use the :set command
e More effective to set them "permanently”
e Add them to your .vimrc file (in your home directory)
e To turn a boolean option on:
:set <option_name>
e To turn it off:
:set no<option name>

« To toggle it:

Mastering Vim

Copyright © Thoughtstream Pty Ltd, 2006
(damian@conway.org)

:set inv<option name>
:set <option name>!
» Toresetit to default:
:set <option_name>&
» To turn on an option that takes a value
:set <option_name>=<option value>
* To add to/remove from a list of option values:
:set <option name>+=<new_value>
:set <option name>-=<existing value>

* To see all current OEtion values:

:set

o e

Tip 30: Show your line numbers

* Some programmers like to see line numbers all the time:

:set number
bl

Tip 31: Constrain your line widths

* Most people prefer their editor to wrap text lines that get too long
* Typically at 72, 78, 79, 80, or 132 columns
» To tell vimto do that as you insert:

set textwidth=78

» Alternatively, you can tell vim to wrap a certain number of characters before
the edge of the terminal:

set wrapmargin=2

* Recommend textwidth rather than wrapmargin

 ..because vim won't automatically rewrap existing lines when the terminal
width changes

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 2 7
(damian@conway.org)

Tip 32: Write before you leave

By default, before leaving a buffer, vim asks you whether you want to save the
contents

You almost always do
So make it the default:

:set autowrite

Tip 33: Configure your .vimrc file

Once you've set your options the way you prefer them, exit you editor...and
they'll all be lost!

Setting individual options every time you edit is impractical

So you can save the settings you prefer and have them automatically loaded
each time you edit

Such configuration settings are stored in a file named .vimre
Or _vimrc on certain filesystems
Your personal .vimrc lives in your home directory: ~/.vimre
It's a plain text file that you can create and edit (using vim!)
Or, better yet, start up a vim session from your home directory...
...set your preferred options and modes...
...then type:
imkvimrce
Your options will be saved in a new .vimrc file in your home directory
You can then add new configuration features by editing the file directly

Tip 34: Set your options by browsing

vim has so many options that setting them can be daunting
In fact, just remembering them can be a challenge

So vim provides an option browser to help

Start it up by typing:

:options | resize

Navigate using the normal motion commands
Hit <ENTER> on a section name to jump to that section's options

Mastering Vim

2 8 Copyright © Thoughtstream Pty Ltd, 2006

(damian@conway.org)

+ Hit <ENTER> on a description line for the full help entry

¢+ (Type 22 to get close the help window)

* Hit <ENTER> on a boolean option to toggle it

= For options that take values, edit the value and then hit <ENTER>

¢ Once you're happy with the options you've set, you can save them as before:
tcd ~

smkvimrce

Tip 35: Defang those tabs

* Tabs create more editing problems than any other character
* They're ill-defined

* They change appearance under different defaults

* They're best avoided

* QOr, at least, restrained

Sticking with eight-column tabs

e If you're forced to use eight-column tabs...
 ..you can still have your cake and eat their tabspacing too
* Vim provides a "soft tabs" option:
:set softtabstop=4
» When this option is set, vim uses the standard 8-column tabs
¢ But doesn't insert a tab when you hit <TAB>
 Instead, it inserts 4 spaces on the first <TAB>
+ ..and then removes them and inserts a tab on the second <TAB>

* So it feels like you're using 4-column tabs

...and looks like you're using 4-column tabs

* ..but your code still looks right under 8-column tabspacing
Adjusting tabs

* If you want to adjust the tabs in a file from one tabspacing to another:
:set tabstop=<current tabspacing>

:retab <new tabspacing>

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 29

{damian@conway.org)

» For example:

:set tabstop=8
t:retab 4

» If you go from a smaller to a larger tabspacing, some tabs will be replaced with
sequences of spaces

e Which means that : retab does not "round-trip”
 For example, if your tabstop is originally 4, then:
:set tabstop=4
:retab 8
sretab 4
 ..will leave what were originally single tabs as 4-space sequences
e Use:
:retab! 4

...to tell vim to convert multiple-space sequences to tabs where feasible

Replacing tabs as you type

 If you set the expandtab option:

:set expandtab ISR P
.,-—_-.,—-——""'”'-'———h .) %; yl«,/]'f(i-'f _L
o ..vimreplaces every tab you type with the appropriate number of spaces f’
) ! V[f @l

» ..as determined by the current value of tabstop /
1

» If expandtab is set when a : retab is performed, all tabs are expanded to
spaces:
:set expandtab

t:retab

Tip 36: Indent cleverly

« If you decide to have tabs defanged using the expandtab option you create a
different problem N

« The <TAB> key and shift commands (<< and >>) W’/f? ait 77’35"5!9 J
e Under expandtab they insert a fixed number of spaces

* So things stop lining up

* You can overcome that, by telling vim to "round down" any tabspacing:

set shiftround
+ Then tabs and shifts always tab and shift to the next tabstop

Mastering Vim
3 O Copyright © Thoughtstream Pty Ltd, 2006

(damian@conway.org)

Smarter indenting

 Normally, if you're expanding tabs, a tab inserts one tabstop worth of space
everywhere

 That's fine, except at the start of a line
* Because the shift commands insert one shiftwidth worth of space instead

* So your indenting can get messed up if you set shiftwidth and tabstop to
different values

* Don't do that!
* But, if you must, you can tell vim to use shiftwidth for column-1 tabs:

:set smarttab

Total tabular control

* If you frequently have to work with "alien" tabspacings a simple set of macros
can make life very much easier: ’

map <silent> TR :set expandtab<CR>:%retab!<CR>
map <silent> TT :set noexpandtab<CR>:%retab!<CR>
function. ConvertToTabSpacing (newtabsize)

let was_expanded = &expandtab

normal TT

execute "set tabstop=" . a:newtabsize

execute "set shiftwidth=" . a:newtabsize

if was_expanded

normal TR
endif

endfunction

map <silent> T@ :call ConvertToTabSpacing(2)<CR>
map <silent> T# :call ConvertToTabSpacing(3)<CR>
map <silent> T$:call ConvertToTabSpacing(4)<CR>
map <silent> T% :call ConvertToTabSpacing(5)<CR>
map <silent> T" :call ConvertToTabSpacing(6)<CR>
map <silent> T& :call ConvertToTabSpacing(7)<CR>
map <silent> T* :call ConvertToTabSpacing(8)<CR>

map <silent> T(:call ConvertToTabSpacing(9)<CR>

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 3 1

(damian@conway.org)

TT inserts tabs everywhere possible

TR removes every tab (via expandtab)

The ConvertToTabSpacing function ensures tabs are in effect...
...then sets new values for tabstop and shiftwidth

...then re-expands to spaces, if you were originally expanded

The mappings T@ through T(then provide quick conversion to the
corresponding tabspacings

Tip 37: Recover after a disaster

Inevitably your vim session will eventually crash

Not because vim is unreliable (it's incredibly reliable)

But because your hardware, or operating system, or filesystem, or network fails
As you edit, vim periodically swaps out the current state of your buffer

Wirites it to a file in the same directory

If your vim session is prematurely terminated, can recover most of your work
from that file

Recovering after a crash

For example, if you were editing:
> vim my_vital_data.txt

And the session was unexpectedly terminated, try:
> vim -r my_vital_data. txt

If there is a swap file available, vim will use it to reconstruct your buffer

It's typically a good idea to immediately save that buffer under a related name:
:w my vital data.recovered

.just in case things fall over again

You can find all the existing swap files using:

> vim -r

R e
(i.e. with no filename)

Preventing mishaps

Vim also uses the swap files to detect when you attempt to edit a file that
another vim session is already editing

Mastering Vim

3 2 Copyright © Thoughtstream Pty Ltd, 2006

(damian@conway.org)

* If you do that, the second vim process will inform you:
E325: ATTENTION
Found a swap file by the name "my vital data.swp"
owned by: daﬁian dated: Mon May 22 15:59:22 2006
file name: ~damian/Talks/vim/my_vital data
modified: yes
user name: damian host name: Gort.local
process ID: 2849 (still running)
While opening file "my_vital_ data”
dated: Mon May 22 15:59:07 2006
(1) Another program may be editing the same file.
If this is the case, be careful not to end up with two
different instances of the same file when making changes.
Quit, or continue with caution.
(2) An edit session for this file crashed.
If this is the case, use ":recover” or "vim -r my_vital data"

"

to recover the changes (see ":thelp recovery").
If you did this already, delete swap file "my vital_data.swp"
to avoid this message.

Swap file "my vital data.swp" already exists!

[O]lpen Read-Only, (E)dit anyway, (R)ecover, (Q)uit, (A)bort:

* "Open Read-Only" or "Abort" is almost always the correct response here

Improving your chances

* Normally vim writes out your buffer to a swap file every 200 keystrokes

* And doesn't always sync that swapfile to disk when it's written (that depends
on your O/S and filesystem)

* So you could potentially lose 400 (or more!) keystrokes in a crash

» Aslong as you don't mind the near-constant disk activity, your session will be
much more recoverable with:

:set updatecount=10

:set swapsync

* Then you'll never lose more than about 20 keystrokes

* However both these may adversely affect your interactivity, as well as
compromising battery life on laptops

* swapsync in particular

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 33

(damian@conway.org)

Tip 38: Make a backup

Normally when you write a file:

:write

:write <filename>

...the buffer contents overwrite the corresponding disk file

If you want a little more safety:

:set backup

Now vim will make a backup of the file before overwriting it
The backup has the original filename with a ~ or _ appended
You can change that extension with (for example):
set backupext=.bak
Normally, the backup is written to the same directory as the original file
But you can nominate another directory
For example:
set backupdir=~/.backups

There are numerous other options besides these: when to skip backups, what to
do with old backups, how to create the backup, etc.

For more details, see:

thelp backu

Tip 39: Edit visually

One of the challenges of vim is remembering the many ways to specify what
your command is suppose to act upon

For example:
X delete character
10x delete 10 characters

diw delete inner word

Eéw delete a word

dd delete one line

dtz delete up to next letter 'z

1 1

dfz delete up to and including %FXt letter 'z

dib delete inner '(' ')' block

¥

dap delete a paragraph

Mastering Vim

3 4: Copyright © Thoughtstream Pty Ltd, 2006

(damian@conway.org)

* If you're a visually oriented person, it's hell

* S0 vim provides visual modes as well

* In these visual modes the usual command-target sequence is reversed
* You first specify the area to be affected

* Then specify the effect

Visual mode

* The simplest visual mode is Visual mode

* Youtype v and you're in it

* Then you move around, using any of the normal motion commands

* Asyou move, vim highlights from where you started to where you are now

* Once you've selected the text you want, you type the command you want to
execute

* You can execute any "colon” command
* Or any of the normal commands: y, >, ~, etc.
* For example:

vsd

v2id

v}id

* Note that line-oriented commands (colon commands, shifts, etc.) operate on the
full lines covered by the selection

Visual-Line mode
* Because you often do want to operate on complete lines, there's a second visual
mode
* Use Vinstead of v
* Selects entire lines as you move the cursor
* No matter where in the line the cursor is

e Otherwise identical to v mode

Visual-Block mode

¢ The funkiest and most useful visual mode
* Enter it using <CTRL-V>

s Selects a rectangular block from your cursor position to wherever vou move
gu y P y

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 3 5

(damian@conway.org)

» Subsequent command is applied only to that block

» Incredibly handy for adjusting table columns

Special commands for block mode
<CTRL-V><motion>I<text> Inserts text before block on every line
<CTRL-V><motion>A<text> Appends text after block on every line
<CTRL-V><motion>c<text> Changes every line of block to text

<CTRL-V><motion>r<char> Changes every character in block to char

Terminating block mode

If you're in block mode and decide you'd rather not be just hit <Esc>

Visually selecting text objects

Normally a visual selection extends from where you entered your visual
mode...

...to wherever your cursor is now
However, as well as using motion commands to specify your selection...
...you can also use "text object" commands
For example, to indent the paragraph surrounding the cursor:
vip>
Another handy variation joins all the lines of your current paragraph:

vipd

Tip 40: Abbreviate your typing

It's tiresome to have to type in oft-repeated sequences
For example, your email or web address

Or standard text markers like:

Or even just repeated tags like:

<blockquote><cite>

</cite></blockquote>

So vim provides an mechanism that allows you to specify abbreviations that
will be expanded when typed

Mastering Vim

3 6 Copyright © Thoughtstream Pty Ltd, 2006

(damian@conway.org)

» For example:
:abbreviate hdco http://damian.conway.org
sabbreviate daco damian@conway.org
:abbreviate bgc <blockquote><cite><CR></cite></blockquote>
:abbreviate --c¢ <CR>----- Cut-—======= Cut=m=m—————— cut-———-

» When the LHS of an abbreviation is recognized during insertion of on the
command line it is immediately expanded to its RHS

 The expansion is exactly like typing it yourself
* So, as long as you're careful, you can be even cleverer:

:ab bgc <blockquote><cite><CR><CR></cite></blockquote><UP><TAB>

tab --¢c <CR>--=---cut—-——=-- cut—-——-—— cut----<C-0>:center<CR><DOWN>

Restrictions on the LHS

 There are restrictions on what you can use as an abbreviation

e The LHS of an : abbreviate must either consist entirely of keyword
characters (i.e. be an identifier)

e ..or it must consist entirely on non-keyword characters but end in a single
keyword character (e.g. #1 or -~c or @=X)

e ..orit must end in a non-keyword character, with the preceding characters
being anything you like (e.g. 1# or c—- or orz!)

e You can't use whitespace in abbreviations

Expanding abbreviations

« Abbreviations also require some trailing context to know they've been entered

* That is, you have to type a non-keyword character after the abbreviation before
it will be expanded

* The extra character you typed is inserted after the expansion

* You can expand an abbreviation without trailing context by typing CTRL-]
Reviewing your abbreviations

e Ifyou type:
:abbreviate

 ..without an argument, you get a list of the active abbreviations
* Toremove an abbreviation:

sunabbreviate bqgc

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 3 7
(damian@conway.org)

To remove all abbreviations:

tabclear

Targeted abbreviations

Be careful though
Abbreviations are active on the command line too
To deactivate them type a literal <CTRL-V> before the abbreviation
(You have to type two <CTRL-V> to get one though)
:abbreviate "V"V--c
On the other hand, abbreviations can be useful on the command line
For example, if you frequently need to save to a particular file:
:abbreviate bak /usr/local/tmp/backup/damian/checkpoint
However, you'll also get that expanded in inserted text

A better option is to use the iabbrev and cabbrev versions
,-——-——‘-/“

With these you can tell vim exactly where to expand the abbreviation
Only in insertions:

:iabbrev bqgc <blockquote$<cite><CR><CR></ cite></blockquote><UP><TAB>
Or only on the command line:

:cabbrev bak /usr/local/tmp/backup/damian/checkpoint

Computed abbreviations

You can specify that an abbreviation should expand to the result of some
expression in the vimmish command language

For example, to have TS expand to the current timestamp:
:abbreviate <expr> TS strftime("%c")

Or to have PPP expand to the last yanked text:
:abbreviate <expr> PPP getreg('')

Or to have ~ " insert the contents of the preceding non-empty line:

:abbreviate <expr> "~ getline(search('\S_.*\n_.*\%#','b"))

Mastering Vim

3 8 Copyright © Thoughtstream Pty Ltd, 2006

{damian@conway.org)

Tip 41: Map your commands

» Abbreviations are great, but suffer from two major constraints: they're only
available in Insert mode and on the command line, and they require an extra
character typed after them

* Maps remedy both those problems

* A map is a character sequence that is expanded as soon as the complete
swPeé {(no trailing context required)

* You can specify separate maps for Insert mode, Command-line mode, Normal
mode, Visual mode, and various combinations thereof

Insertion maps

* Insertion maps can be used instead of abbreviations:
:imap ww http://damian.conway.org
:imap ee damian@conway.org
:imap ;b <blockquote><cite><CR></cite></blockquote><ESC>0

¢ Maps have the advantage that they don't require an additional character to be

typed
* They have the disadvantage that they don't require an additional character to
be typed

* That means you need to be careful in selecting your map trigger

* In practice, abbreviations are better for content expansions:

:ab NAME Dr Damian Conway
:ab ADDR Thoughtstream Pty Ltd<CR>PO Box 668<CR>Ballarat
* ..whilst imaps are better for behavioural insertions

 For example, if you don't use tabs and would prefer <TAB> to do word
completions:

:imap <TAB> <C-N>
¢ Now every tab character immediately acts like a <CTRL-N> completion request

Normal maps

» The second advantage of maps is that they can be applied in Normal mode

 For example, if you're forever deleting paragraphs:

dip
 ..you could abbreviate that command:
:nmap X dip
Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 3 9

(damian@conway.org)

Likewise, if you find you want Visual Block mode far more often than Visual
mode...steal Visual mode's trigger:

snmap v <C=V>
Or to make vim more browser-like:
inmap <Space> <PageDown>
Or to make interfile navigation more convenient:
:nmap <DOWN> :next<CR>
tnmap <UP> :prev<CR>
Normal maps are also useful for larger commands
For example:

:nmap <silent> ;y : if exists("syntax on") <BAR>

\ syntax off <BAR>
\ else <BAR>
\ syntax enable <BAR>

\ endif<CR>

As you can see :nmap is the key to redesigning the vim interface to better suit
your needs

Command-line maps

Because they don't require any trailing characters, maps can occasionally be
handy for shortcuts on the command-line

For example, if you frequently write to a backup file:
:w ~/backup/latest<CR>

You might prefer:
:cmap wb w ~/backup/latest<CR>

Which then allows:

:wb

Operator-pending maps

There's a special mapping mode just for operators

Recall that operators are commands like ¢ and d

Commands that expect a motion, or object, or pattern after them
(As opposed to commands like R and s that take a count before)
After you've typed the operator and vimis waiting for an operand...
...it's in "operator-pending” mode |

You can map key sequences for that special mode with an :omap

Mastering Vim

40 Copyright ® Thoughtstream Pty Ltd, 2006

{damian@conway.org)

* For example, if you constantly find yourself wanting ciw but typing cw
instead:

r:omap w iw

* Orif you'd rather db mean "delete to end of block", instead of "delete to start of
current word™:

somap b }

Other kinds of maps

* In addition to : imap and :nmap and :cmap and :omap, there's also:
* :xmap, which defines mappings only for the visual modes

* :smap, which defines mappings only for Select mode (a Windows compatible
variant on the visual modes)

* :vmap, which defines mappings for all the visual modes plus Select mode
* :map!, which defines mappings for Insert and Command-line modes
* :map, which defines mappings for almost all modes

2 {"* :lmap, which defines mappings for an incredibly obscure case that you'll
almost certainly never encounter or care about

* For more details, see:
thelp :map-modes
* :vmap is probably the most useful of these modes

* For example, if the behaviour of <BS>/ annoys you in Visual Block
mode, you can change it:

:vmap <BS> x
Managing maps
* You can see the maps you have defined by using the appropriate map variant
without an argument:

:imap
:nmap

* You can see a particular mapping by naming it:
simap <TAB>
:nmap v

* You can remove a mapping with the appropriate unmap variant:
:iunmap ww
tjunmap ee

scunmap wb

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 4 1
(damian@conway.org)

* You can remove all mappings with the mapclear variants:
:imapclear
snmapclear

:vmapclear

Unremappable maps

« When you map something, the expansion is re-expanded, if necessary
« That can occasionally be useful:
:nmap X dip
:nmap Y XO[Paragraph deleted here]<ESC>: center<CR>
» It can even be recursive:
:nmap X 0i# <ESC>jX
« However, occasionally this re-expansion feature can create problems

+ For example, previously we stole Visual mode’s command and gave it to Visual
Block mode:

inmap v <C-V>
¢ What if we'd wanted to swap the two instead:
:nmap v <C-V>
cnmap <C-V> v
e Here a v would expand to <CTRL-V>...
+ ..which would re-expand to v...
o+ ..which would re-expand to <CTRL-V>...
 ..etcetera, et cetera
« vim detects such infinite recursions and doesn't expand the mapping at all

» To support swapping commands (and other situations where re-expansion is
undesirable), vim instead provides the noremap variants

» For example:

snnoremap v <C-V>

:nnoremap <C-V> v
e This causes the RHS of the mapping not to be re-expanded
» It'sa good (i.e. safe) default

Mastering Vim

42 Copyright © Thoughtstream Pty Ltd, 2006

(damian@conway.org)

Tip 42: Colour your syntax

Vim has excellent support for syntax colouring
Turn it on with:

:syntax enable
Turn it off with:

:syntax off
Probably best to put them in your .vimre
Autoselects language, based on the file extension
Can also manually select:

:set syntax=ruby

Supports around 480 languages including: ADA, ANTLR, Apache config,
AWK, BASIC, bib, C, changelog, Clipper, COBOL, crontab, csh, CSS, diff, DNS,
Doxygen, DTD, Dylan, Eiffel, expect, Forth, Fortran, Foxpro, fstab, Gedcom,
gnuplot, groff, Groovy, Haskell, HTML, Icon, Java, JavaScript, lex, Lisp, M4,
mail, mailaliases, mailcap, make,@ Maple, Matlab, MySQL, Ocaml, Occam,
Pascal, passwd, Perl, PHP, Pod, procmail, Prolog, Python, rcslog, Rexx, robots,
Ruby, Samba, SAS, Scheme, sed, SGML, sh, SQL (numerous variants),
sshconfig, sshdconfig, SVN, tar, Tcl, tcsh, terminfo, TeX, texinfo, valgrind,
Verilog, VHDL, Vim, VRML, xdefaults, XHTML, xinetd, XML, xmodmap, XS,
yacc, YAML.

Tip 43: Fix bugs fast

Optimize the code-compile-debug cycle

The :make command executes your compiler on your buffer then enters
"quickfix" mode

Produces a list of errors that you can step through

Each step takes you to the location of the next error

Locations determined by parsing compiler error messages

By default, :make calls make and expects back error messages in the (very
common) format:

<file>.<line>:<error message>

Vim comes with parsers for a range of compilers, including gcc, AWK, Jikes,
Javac, Ant, Jade, TeX, LaTeX, Pyunit, and Perl

Can write your own parsers for other compilers’ error formats

Or install a translator for error messages to the default error format

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 43
(damian@conway.org)

For example, to debug Perl scripts:

:set makeprg=$VIMRUNTIME/tools/efm perl.pl\ -c\ %\ §»*
efm_perl.pl converts the usual Perl error messages:

<error message> at <file> line <line>
...to the expected format:

<file>:<line>:<error message>

Navigating errors

Once the quickfix error list is built can step through it
:cc <N>takes you to the Nth error

:cn takes you to the next error

: cp takes you to the previous error

:cnf and :cpf take you to the first error in the next file or the last error in the
previous file

Tip 44: Let vim do the indenting for you

The simplest form of formatting support
Enable it with:

:set autoindent
Now every new line in Insert mode will start at the same column as the

previousline

For more sophisticated indenting, you can also:

:set smartindent

Increments the indent when the previous line ends with a {
Decrements the indent when the new line starts with a }
Shunts every shell-like comment (lines starting with #) to the left margin
That's annoying, so most folks switch it off with:
inoremap # X<C-H>#

Smartmatching also increases the indent when previous line starts with any of
the words specified by the cinwords option

By default those words are C-like keywords:

:set cinwords=if,else,while,do, for,switch

Mastering Vim

4 4 Copyright © Thoughtstream Pty Ltd, 2006

(damian@conway.org)

But you can change that:

:set cinwords=if,elsif,else,unless,while,until, for, foreach

Of course, if you actually do want C-like indenting...
* ..it's best to go all the way:

:set cindent

For details of the excruciating range of options available in this mode, see:

:help cinoptions

Tip 45: Script vim

5 Vim has its own scripting language

J
f & Fully featured: variables, expressions, variadic argument lists, control

L structures, built-in functions, user-defined functions, function references, lists,
o V&* ! dictionaries, 1/O, pattern matching, buffer and window access and control,
P exceptions, OO, integrated debugger, etc., etc.
\}ﬂg;/ * Far too much to cover in detail

¢ See:

thelp vim-script-intro

* Some examples to illustrate the potential
* You'd put these in your .vimrc

function! ExpurgateText (text)

for expletive in g:expletives_ list

a:text = substitute(a:text, expletive, '[DELETED]', 'g')
endfor
return a:text
endfunction
function! SaveBackup ()
execute 'saveas ' . bufname('$%') . '.backup ' . g:backup count

let g:backup_count += 1

endfunction

* Functions can be called either as part of an expression:

:let success = setline('.', ExpurgateText(getline('.'))
* Or directly via the :call command:

:call SaveBackup()

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 45

(damian@conway.org)

 You can make a function aware of the range of lines it's dealing with:

function! DeAmp () range

echo 'DeAmping lines ' . a:firstline . ' to ' . a:lastline
execute a:firstline . ',' . a:lastline . 's/&/&/g’
endfunction
* And then:

:.,+10call DeAmp()
 The call is applied once and the range passed as implicit arguments

Functions and maps

* Earlier, we saw how to remap the <TAB> character to do completion during
insertions:

:imap <TAB> <C-N>
e That's handy, but so is tabbing

» It would be better if a <TAB> were smart enough to know when it should
complete and when it should inserts tabs

 That's easy to achieve by changing the : imap to call a function:
function! TabOrCompletion()

let col = col('.') - 1

if tcol || getline('.')[col - 1] !~ ’"\k'
return "\<TAB>"

else
return "\<C-N>"

endif

endfunction

:inoremap <silent> <TAB> <C-R>=TabOrCompletion()<CR>

« This uses the <CTRL-R>= Insert-mode command to evaluate an expression and
insert the result

e The call to TabOrCompletion () examines what's before the cursor and
returns either a literal <TAB> or a <CTRL-R> completion request accordingly

Mastering Vim

Copyright © Thoughtstream Pty Ltd, 2006
(damian@conway.org)

Tip 46: Play tag

Remember the CTRL-] feature of the :help files? R
That's a specific instance of a much more general faci]ify known as taggmg
Can inform vim where certain keywords are defined -

In the current file, or in other files

When you hit CTRL-], vim looks up the word under the cursor in a file named
tags in the current directory ’ '

This file tells vim where to jump to

Theoretically, you could create a "tags" file yourself but that's way too much
effort T

o

Unix systems typically come with a utility named ctags which builds tag files
for collections of C source files and, in many cases, for collections of source files
for other languages

If your system doesn't provide a ctags utility
...or your ctags doesn't support your chosen development language(s)

...you can download and build an open source, multilingual version:
http://ctags.sourceforge.net/

Can build tag files for Assembler, ASP, Awk, BETA, C, C++, C#, COBOL, Eiffel,
Erlang, Fortran, HTML, Java, JavaScript, Lisp, Lua, Make, Pascal, Perl, PHP,
PL/SQL, Python, REXX, Ruby, Scheme, Shell scripts (Bourne/ Korn/Z), S-Lang,
SML, Tcl, Vera, Verilog, Vim, and YACC

To create a tag file:
> ctags *.[ch]
> ctags *.py

> ctags *.tcl
Once you have a tag file in the current directory any vim session will
automatically have tags enabled
In addition, you can tell vim where else to search for tags:

:set tags+=-/path/to/tag/file/directory/

With tags enabled, once you hit CTRL-] vim looks up the word under the
cursor in any available tag files

It then jumps you to the appropriate file and file

The typical usage is to place the cursor over a function name and hit CTRL-] to
be taken to the definition of that function ’ —

Or place the cursor over a constant and hit CTRL-]

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 4 7
(damian@conway.org)

Or place the cursor over a typename and hit CTRL-]
Go back up the tag stack with CTRL-T
I you want to look up an identifier that isn't in the text, use:

ttag <identifier>
For example:
:tag main
:tag xMalloc
Tags also have completion available:
ttag ma<TAB>

Tip 47: Have vim do some of the coding for you

Vim is event-driven

Provides hooks that allow you to execute commands automatically whenever
particular events occur

Such commands are specified using the autocmd command
For example, there's a hook for when a new file is created

Could use it to have vim do some set-up for you...

Automatzc file skeletons

W“Y /ﬂm

Almost every . h fi (has the same skeletal structure

Almost every .py f;el needs the same basic features

Almost every Perl documentation specifies the same standard sections
So it'd be handy if vim could set those “boilerplates” up automatically
Put something like these in your .vimrc

autocmd BufNewFile *.h Or ~/templates/skeleton.h
autocmd BufNewFile *.py Or ~/templates/skeleton.py
autocmd BufNewFile *.pod 0r ~/templates/skeleton.pod

Or you might prefer to have your skeletons generated on-the-fly
(So they can incorporate edit-time information)
For example:
autocmd BufNewFile *.pf{lm] Or !file template <afile>

autocmd BufNewFile *.p[lm] 1/°[\t]*[#].*implementation]
\t]\+here/

Mastering Vim

4 8 Copyright © Thoughtstream Pty Ltd, 2006

(damian@conway.org)

Patching files in vim_

« vim has excellent support for applying patches
« ..and examining the effects

If you have the unpatched file in a buffer, you can simply type:
:vert diffpatch <patch_filef

This copies your buffer...

* ..opens a new window beside it with the same contents...

..patches the contents of the new window with the patch file
...and turns on difference highlighting

Tip 48: Script vim in Perl/Python/Ruby/etc.

* You can script vim in languages other than vimmish

* For example, you could write a simple command that makes a bullet list from a
comma'd list:

:map ;b :perl
\ ($line) = $curwin->Cursor;

\ S$curbuf->Append($line, map "\t* §_",

\ map { /"\s*(.*2)\s*$/ 2 §1 : §_ }
\ split /,\s*/,
\ Scurbuf->Get($1line));

\ S$curbuf->Delete($line)<CR><CR>

e There's an API providing access to all windows, buffers, text, options, etc. from
within Perl
* For a complete list of the available functions, see:
:help :perl-using
« If you prefer to script in Python, that's just as easy:
:python <<END_PYTHON
from vim import *
from string import upper
current.line = upper(current.line)

END_PYTHON

vim also has internal interfaces to MzScheme, Tcl, and Ruby

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 49
(damian@conway.org)

* Tor more details:

:help <language name>

Tip 49: RTFM

« Often when you're editing code you need to check the manual
e Vim makes that easy with the K command

e In Normal mode, typing K does a man on the word under the cursor

* You can change the manual program that's invoked by setting the keywordprg
option:
:set keywordprg=perldoc

Tip 50: use vim as a pager

o (Can use vim as a replacement for more or less
15€ vimas a replacetiells B T = o =

 Invoke vim via the shell script:
. $VIMRUNTIME/macros/less.sh ’
» Handy because it syntax-highlights Kpist 245 hye ot ‘-”%
» For example: ASEA | W%S
> $VIMRUNTIME/macros/less.sh ~/Talks/Vim/demo/Main.cc

Conclusion

« We've covered maybe one tenth of the full power of vim

e And there many more configuration options, usage variations, extra tricks, et
cetera, for the features we have covered

o Other major features include: virtual editing, digraphs, folds, windows, tabbed
editing, binary files, text highlighting, active matching, visual quickfix mode,
sessions, views, autoformatting of text and comments, spell checking, the
"global" command, encryption, mode lines, persistent editing, recording
command sequences, printing.

s :helpis your friend
e :help <topic><TAB> doubly so

« You don't have to take immediate advantage of everything we've talked about
here

« But there are probably several of these features that would dramatically
improve your productivity

Mastering Vim

5 O) Copyright © Thoughtstream Pty Ltd, 2006

(damian@conway.org)

* Learn more of the navigational commands

* Try the visual modes when they're more appropriate

» Set the options to help you work the way you like to work

» Create abbreviations and/ or maps to short-cut your common tasks

¢ See if syntax colouring, folds, tags, and quickfixing can facilitate your coding

* There are entire new dimensions of power and convenience hidden behind that
familiar vi interface

* Explore them!

Appendix A: vim's pattern syntax

* Vim uses an extended version of regular expressions
* Not the same as vi's

» Not the same as Perl's (but of comparable power)

s

* The basic rule is that almost every character matches itself
» With a few exceptions, only backslash-escaped characters are special

e The main features are:
Subpattern... Matches...
. ...any character except newline
* ...zero or more of the preceding

~

...start of line (only at start of pat)

$...end of line (only at end of pat)
[e.] ...an explicit character class
\<numerous characters> ...special behaviour

\\ ...a literal backslash

<any other character> ...itself

* Special behaviours fall into categories as follows...

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 5 1

{damian@conway.org)

NG d \) %;> awp:
W1 \2 ,4¢ éwk 1T s

Characters and character classes

 The following backslashed characters are short-hands for one or more "difficult”
characters:

Escape Matches...

A" literal '*'
\$ literal 'S$'
_. any character, including newline
\a alphabetic character: [A-Za-2]
\A non-alphabetic character: ["A-Za-2z]
\b <BS>
\d digit: [0-9]
\D non-digit: [70-9]
\e <ESC>
\f any character that might appear in a filename
\F like "\f", but excluding digits
\h head of word character: [A-Za-z_]
\H non-head of word character: ["A-Za-z_]
\i identifier character
\I like "\i", but excluding digits
\k keyword character
\K like "\k", but excluding digits
\1 lowercase character: [a-2]
\L non-lowercase character: [fa-2]
\n end-of-line
\o octal digit: [0-7]
\O non-octal digit: [70-7]
\p printable character
\P like "\p", but excluding digits
\r <CR>
\s whitespace character: <SPACE> and <TAB>
_s whitespace character: <SPACE>, <TAB>, and newline
\S non-whitespace character; opposite of \s
\t <TAB>
\u uppercase character: [A-Z]
Mastering Vim
5 2 Copyright © Thoughtstream Pty Ltd, 2006
(damian@conway.org)

\U non-uppercase character ["A-2Z]

\w word character: [0-9A-Za-z_]
\W non-word character: ["0-9A-Za-z_]
\x - hex digit: [0-9A-Fa-f]

\X non-hex digit: ["0-9A-Fa-f]

\%o<n> specified octal character
\%d<n> specified decimal character
\$x<n> specified hex character
\%u<n> specified multibyte character

\$U<n> specified large multibyte character

Repetitions
e Zero-or-more: append *
* One-or-more: append \+
* Zero-or-one: append \?
* Exactly-M: append \ { M}
* M-to-N: append \ {M, N}
* M-or-more: append \ {M, }
* zero-to-N: append \ {, N}

* For "as few as possible" make first number negative:

* For example, to match a double-quoted string at least one character long:
/MON{=1,}"

* As aspecial case of that, \ {-} minimally matches zero-or-more

* For example, to match everything up to the first occurrence of "__END__":
/_.\{-}__END__

Alternatives, synternatives, and sequences

+ Alternatives are specified with \ |
* For example:

/perl\ |python\ |php
* "Synternatives" are alternatives where both sides have to match

* Specified with a \ &

* The "and" equivalent of \ |'s "or"

* For example, to find a line containing the word "Java" and the word "line™:

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006 53

(damian@conway.org)

/.*Java\&.*1line
* Sequences are successive characters that may be truncated at any paint
* Specified with \%[...]
* Very handy when searching for terms that might be abbreviated

* For example:
/fun\%[ction]
» _.is the same as:

/fun\ |func\ | funct\ | functi\ | functio\ | function

Context specifiers

¢ The ~ and $ markers allow you to constrain where a match can occur
* There are many other such constraint specifiers

* For example, _ "~ and _$, which are the same as " and $, except they can
appear anywhere in a pattern

* (Handy in alternations and synternations)

e Also \%" and \%$: start and end of file

* Other positional constraints include:

* ..match only at current cursor position: \ $#

* ..match only at line N: \$N1

* ..match only at column N: \$Nc

* ..match only at virtual column N: \ $Nv (allowing for tabs)

* Can also put a < or > after the % to indicate "before" or "after” the specified
row/ column

e The \< and \> subpatterns only match at the start/end of a word
* For example:

/\<for\>
* ..matches "for", but not "fortune" nor "wherefor" nor "enforce"

Match boundaries

* Sometimes you want to use a pattern in a substitution

* You need to match a certain line, but only change part of it y]tp
5 v t(W

¢ D7

* To make that éasy, vim provides the \ zs and \ ze specifiers

« They alway you to mark where the pattern should be considered to have

matched Y [
/oﬁvi
J
Mastering Vim
5 4 Copyright © Thoughtstream Pty Ltd, 2006
(damian@conway.org)

* Suppose you want to find every call to the function 'update’ (provided its first
argument starts with a digit) and change that call to a call to 'update_num’

* You could do that with: / ‘\,Aﬁ
:%s/\s*\zsupdate\ze§\d/update_num/g
* The \zs and \ ze tell the substitution that, if it successfully matches the entire
pattern...

* ..it should pretend that it only matched from just after the \ zs to just before
the \ze

* ..s0 that the substitution only replaces the "update”

Mastering Vim
Copyright © Thoughtstream Pty Ltd, 2006
(damian@conway.org)

